Homothetic $$\alpha $$ -Self-Similar Solutions to the Mean Curvature Flow in Minkowski 3-Space

Ajay Kumar Yadav, Akhilesh Yadav
{"title":"Homothetic $$\\alpha $$ -Self-Similar Solutions to the Mean Curvature Flow in Minkowski 3-Space","authors":"Ajay Kumar Yadav, Akhilesh Yadav","doi":"10.1007/s00574-024-00413-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we classify the non-degenerate ruled surfaces which are homothetic <span>\\(\\alpha \\)</span>-self-similar solutions to the mean curvature flow (MCF) in Minkowski 3-space <span>\\(\\mathbb {E}^3_1\\)</span>. Other than cylindrical surfaces as in <span>\\(\\mathbb {E}^3\\)</span>, we find a class of non-cylindrical ruled surface with null rulings, in particular, the null scrolls. Further, we investigate the non-degenerate surfaces of revolutions generated by non-null curve as homothetic <span>\\(\\alpha \\)</span>-self-similar solutions to the MCF according to the causality of their rotation axes as spacelike, timelike and lightlike.</p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-024-00413-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we classify the non-degenerate ruled surfaces which are homothetic \(\alpha \)-self-similar solutions to the mean curvature flow (MCF) in Minkowski 3-space \(\mathbb {E}^3_1\). Other than cylindrical surfaces as in \(\mathbb {E}^3\), we find a class of non-cylindrical ruled surface with null rulings, in particular, the null scrolls. Further, we investigate the non-degenerate surfaces of revolutions generated by non-null curve as homothetic \(\alpha \)-self-similar solutions to the MCF according to the causality of their rotation axes as spacelike, timelike and lightlike.

Abstract Image

闵科夫斯基 3 空间平均曲率流的同调 $$\alpha $$ - 自相似解
在本文中,我们对非退化的规则曲面进行了分类,这些曲面是闵科夫斯基三维空间(\mathbb {E}^3_1\)中平均曲率流(MCF)的同调(\alpha \)-自相似解。除了在 \(\mathbb {E}^3\) 中的圆柱表面之外,我们还发现了一类具有空尺度的非圆柱尺度表面,特别是空卷轴。此外,我们还研究了由非空曲线生成的非退化旋转曲面,根据其旋转轴的因果关系,将其作为MCF的同调(\α \)-自相似解,即空间相似解、时间相似解和光相似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信