Chase Christenson , Chengyue Wu , David A. Hormuth II , Casey E. Stowers , Megan LaMonica , Jingfei Ma , Gaiane M. Rauch , Thomas E. Yankeelov
{"title":"Fast model calibration for predicting the response of breast cancer to chemotherapy using proper orthogonal decomposition","authors":"Chase Christenson , Chengyue Wu , David A. Hormuth II , Casey E. Stowers , Megan LaMonica , Jingfei Ma , Gaiane M. Rauch , Thomas E. Yankeelov","doi":"10.1016/j.jocs.2024.102400","DOIUrl":null,"url":null,"abstract":"<div><p>Constructing digital twins for predictive tumor treatment response models can have a high computational demand that presents a practical barrier for their clinical adoption. In this work, we demonstrate that proper orthogonal decomposition, by which a low-dimensional representation of the full model is constructed, can be used to dramatically reduce the computational time required to calibrate a partial differential equation model to magnetic resonance imaging (MRI) data for rapid predictions of tumor growth and response to chemotherapy. In the proposed formulation, the reduction basis is based on each patient’s own MRI data and controls the overall size of the “reduced order model”. Using the full model as the reference, we validate that the reduced order mathematical model can accurately predict response in 50 triple negative breast cancer patients receiving standard of care neoadjuvant chemotherapy. The concordance correlation coefficient between the full and reduced order models was 0.986 ± 0.012 (mean ± standard deviation) for predicting changes in both tumor volume and cellularity across the entire model family, with a corresponding median local error (inter-quartile range) of 4.36 % (1.22 %, 15.04 %). The total time to estimate parameters and to predict response dramatically improves with the reduced framework. Specifically, the reduced order model accelerates our calibration by a factor of (mean ± standard deviation) 378.4 ± 279.8 when compared to the full order model for a non-mechanically coupled model. This enormous reduction in computational time can directly help realize the practical construction of digital twins when the access to computational resources is limited.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"82 ","pages":"Article 102400"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324001935","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Constructing digital twins for predictive tumor treatment response models can have a high computational demand that presents a practical barrier for their clinical adoption. In this work, we demonstrate that proper orthogonal decomposition, by which a low-dimensional representation of the full model is constructed, can be used to dramatically reduce the computational time required to calibrate a partial differential equation model to magnetic resonance imaging (MRI) data for rapid predictions of tumor growth and response to chemotherapy. In the proposed formulation, the reduction basis is based on each patient’s own MRI data and controls the overall size of the “reduced order model”. Using the full model as the reference, we validate that the reduced order mathematical model can accurately predict response in 50 triple negative breast cancer patients receiving standard of care neoadjuvant chemotherapy. The concordance correlation coefficient between the full and reduced order models was 0.986 ± 0.012 (mean ± standard deviation) for predicting changes in both tumor volume and cellularity across the entire model family, with a corresponding median local error (inter-quartile range) of 4.36 % (1.22 %, 15.04 %). The total time to estimate parameters and to predict response dramatically improves with the reduced framework. Specifically, the reduced order model accelerates our calibration by a factor of (mean ± standard deviation) 378.4 ± 279.8 when compared to the full order model for a non-mechanically coupled model. This enormous reduction in computational time can directly help realize the practical construction of digital twins when the access to computational resources is limited.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).