Yang Yang, Yuchao Gao, Zijin Wang, Xi’an Li, Hu Zhou, Jinran Wu
{"title":"Multiscale-integrated deep learning approaches for short-term load forecasting","authors":"Yang Yang, Yuchao Gao, Zijin Wang, Xi’an Li, Hu Zhou, Jinran Wu","doi":"10.1007/s13042-024-02302-4","DOIUrl":null,"url":null,"abstract":"<p>Accurate short-term load forecasting (STLF) is crucial for the power system. Traditional methods generally used signal decomposition techniques for feature extraction. However, these methods are limited in extrapolation performance, and the parameter of decomposition modes needs to be preset. To end this, this paper develops a novel STLF algorithm based on multi-scale perspective decomposition. The proposed algorithm adopts the multi-scale deep neural network (MscaleDNN) to decompose load series into low- and high-frequency components. Considering outliers of load series, this paper introduces the adaptive rescaled lncosh (ARlncosh) loss to fit the distribution of load data and improve the robustness. Furthermore, the attention mechanism (ATTN) extracts the correlations between different moments. In two power load data sets from Portugal and Australia, the proposed model generates competitive forecasting results.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"8 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02302-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate short-term load forecasting (STLF) is crucial for the power system. Traditional methods generally used signal decomposition techniques for feature extraction. However, these methods are limited in extrapolation performance, and the parameter of decomposition modes needs to be preset. To end this, this paper develops a novel STLF algorithm based on multi-scale perspective decomposition. The proposed algorithm adopts the multi-scale deep neural network (MscaleDNN) to decompose load series into low- and high-frequency components. Considering outliers of load series, this paper introduces the adaptive rescaled lncosh (ARlncosh) loss to fit the distribution of load data and improve the robustness. Furthermore, the attention mechanism (ATTN) extracts the correlations between different moments. In two power load data sets from Portugal and Australia, the proposed model generates competitive forecasting results.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems