{"title":"Assessment of Geosynthetic Materials for Tunnel Drains: Laboratory Tests and Image Analyses","authors":"Youngseok Jo, Wonjun Cha, Wan-Kyu Yoo, Bumjoo Kim","doi":"10.1007/s12205-024-1690-3","DOIUrl":null,"url":null,"abstract":"<p>Tunnel drainage systems are crucial design factors in tunnels because the accumulation of groundwater at the back of linings can affect tunnel safety. Geotextiles are used to facilitate the dissipation of pore-water pressure. However, chemical agents in the water can lead to clogging as tunnels age. In this study, laboratory tests and image analysis, namely Secondary Scanning Microscopy (SEM) and Energy-dispersive X-ray Spectrometry (EDS), were conducted to assess the drain performance of five geosynthetic materials: four geocomposites and one three-layered Non-Woven Needle-Punched (NWNP) geotextile. Calcium carbonate (CaCO<sub>3</sub>) in liquids affects the discharge capacity of drains, and this capacity decreases with increasing confining pressure. NWNP geotextile is the most vulnerable to confining pressure as it lacks a core. The reason behind the significant decrease in the discharge capacity of NWNP geotextile is clarified based on the SEM analysis. EDS analysis investigated the major composition of the clogged materials, revealing that the primary components are carbon, oxygen, and calcium. Advanced imaging techniques can be utilized to gain a deeper understanding of the underlying mechanisms. The results of this study can aid in the design and maintenance of engineering systems, especially tunnel drainage systems, that incorporate geosynthetic materials.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1690-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tunnel drainage systems are crucial design factors in tunnels because the accumulation of groundwater at the back of linings can affect tunnel safety. Geotextiles are used to facilitate the dissipation of pore-water pressure. However, chemical agents in the water can lead to clogging as tunnels age. In this study, laboratory tests and image analysis, namely Secondary Scanning Microscopy (SEM) and Energy-dispersive X-ray Spectrometry (EDS), were conducted to assess the drain performance of five geosynthetic materials: four geocomposites and one three-layered Non-Woven Needle-Punched (NWNP) geotextile. Calcium carbonate (CaCO3) in liquids affects the discharge capacity of drains, and this capacity decreases with increasing confining pressure. NWNP geotextile is the most vulnerable to confining pressure as it lacks a core. The reason behind the significant decrease in the discharge capacity of NWNP geotextile is clarified based on the SEM analysis. EDS analysis investigated the major composition of the clogged materials, revealing that the primary components are carbon, oxygen, and calcium. Advanced imaging techniques can be utilized to gain a deeper understanding of the underlying mechanisms. The results of this study can aid in the design and maintenance of engineering systems, especially tunnel drainage systems, that incorporate geosynthetic materials.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.