Assessment of Geosynthetic Materials for Tunnel Drains: Laboratory Tests and Image Analyses

IF 1.9 4区 工程技术 Q3 ENGINEERING, CIVIL
Youngseok Jo, Wonjun Cha, Wan-Kyu Yoo, Bumjoo Kim
{"title":"Assessment of Geosynthetic Materials for Tunnel Drains: Laboratory Tests and Image Analyses","authors":"Youngseok Jo, Wonjun Cha, Wan-Kyu Yoo, Bumjoo Kim","doi":"10.1007/s12205-024-1690-3","DOIUrl":null,"url":null,"abstract":"<p>Tunnel drainage systems are crucial design factors in tunnels because the accumulation of groundwater at the back of linings can affect tunnel safety. Geotextiles are used to facilitate the dissipation of pore-water pressure. However, chemical agents in the water can lead to clogging as tunnels age. In this study, laboratory tests and image analysis, namely Secondary Scanning Microscopy (SEM) and Energy-dispersive X-ray Spectrometry (EDS), were conducted to assess the drain performance of five geosynthetic materials: four geocomposites and one three-layered Non-Woven Needle-Punched (NWNP) geotextile. Calcium carbonate (CaCO<sub>3</sub>) in liquids affects the discharge capacity of drains, and this capacity decreases with increasing confining pressure. NWNP geotextile is the most vulnerable to confining pressure as it lacks a core. The reason behind the significant decrease in the discharge capacity of NWNP geotextile is clarified based on the SEM analysis. EDS analysis investigated the major composition of the clogged materials, revealing that the primary components are carbon, oxygen, and calcium. Advanced imaging techniques can be utilized to gain a deeper understanding of the underlying mechanisms. The results of this study can aid in the design and maintenance of engineering systems, especially tunnel drainage systems, that incorporate geosynthetic materials.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"7 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1690-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Tunnel drainage systems are crucial design factors in tunnels because the accumulation of groundwater at the back of linings can affect tunnel safety. Geotextiles are used to facilitate the dissipation of pore-water pressure. However, chemical agents in the water can lead to clogging as tunnels age. In this study, laboratory tests and image analysis, namely Secondary Scanning Microscopy (SEM) and Energy-dispersive X-ray Spectrometry (EDS), were conducted to assess the drain performance of five geosynthetic materials: four geocomposites and one three-layered Non-Woven Needle-Punched (NWNP) geotextile. Calcium carbonate (CaCO3) in liquids affects the discharge capacity of drains, and this capacity decreases with increasing confining pressure. NWNP geotextile is the most vulnerable to confining pressure as it lacks a core. The reason behind the significant decrease in the discharge capacity of NWNP geotextile is clarified based on the SEM analysis. EDS analysis investigated the major composition of the clogged materials, revealing that the primary components are carbon, oxygen, and calcium. Advanced imaging techniques can be utilized to gain a deeper understanding of the underlying mechanisms. The results of this study can aid in the design and maintenance of engineering systems, especially tunnel drainage systems, that incorporate geosynthetic materials.

隧道排水沟土工合成材料评估:实验室测试和图像分析
隧道排水系统是隧道的关键设计因素,因为地下水在衬砌背面的积聚会影响隧道安全。土工织物用于促进孔隙水压力的消散。然而,随着隧道老化,水中的化学物质会导致堵塞。本研究通过实验室测试和图像分析,即二次扫描显微镜(SEM)和能量色散 X 射线光谱法(EDS),评估了五种土工合成材料的排水性能:四种土工复合材料和一种三层无纺针刺(NWNP)土工织物。液体中的碳酸钙(CaCO3)会影响排水沟的排水能力,而且这种能力会随着封闭压力的增加而降低。NWNP 土工织物由于没有核心,最容易受到封闭压力的影响。根据扫描电镜分析,NWNP 土工织物的排水能力大幅下降的原因已经明了。EDS 分析调查了堵塞材料的主要成分,发现主要成分是碳、氧和钙。可以利用先进的成像技术更深入地了解潜在的机理。这项研究的结果有助于设计和维护采用土工合成材料的工程系统,尤其是隧道排水系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
KSCE Journal of Civil Engineering
KSCE Journal of Civil Engineering ENGINEERING, CIVIL-
CiteScore
4.00
自引率
9.10%
发文量
329
审稿时长
4.8 months
期刊介绍: The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields. The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信