Effect of Fatigue Loading and Precracking on the Interface Shear Transfer of Cold Joints

IF 1.9 4区 工程技术 Q3 ENGINEERING, CIVIL
Jie Liu, Anning Wan, Xuyong Chen, Hehui Zheng, Xiangyu Huang, Qiaoyun Wu
{"title":"Effect of Fatigue Loading and Precracking on the Interface Shear Transfer of Cold Joints","authors":"Jie Liu, Anning Wan, Xuyong Chen, Hehui Zheng, Xiangyu Huang, Qiaoyun Wu","doi":"10.1007/s12205-024-1455-z","DOIUrl":null,"url":null,"abstract":"<p>This paper investigated the shear strengths (that is, the ultimate strength, post-ultimate residual strength and failure strength) and shear transfer mechanism of cold joints after experiencing high-cycle fatigue loading and/or precracking. Twelve cold joint push-off specimens with naturally smooth interfaces were cast and tested. Six of these specimens were directly subjected to push-off tests without any prior treatment, serving as control specimens. Two specimens were intentionally precracked, while the remaining four specimens underwent two million constant amplitude load cycles, before the push-off test. Push-off test results indicate that the effect of fatigue loading on shear strengths can be disregarded. Precracking has very little influence upon the residual strength and the failure strength, but it significantly reduces the ultimate strength to a level comparable to the residual strength. Moreover, this paper identified a new interface failure mode and presented complete interface shear load-displacement curves, revealing the shear transfer mechanism at the interface. This mechanism provides a clear explanation for the aforementioned effect on the shear strengths. Besides, building upon this mechanism and through a force-balance analysis, the equations are proposed for predicting the residual strength and failure strength of cold joints, which are found to reliably yield accurate calculation results.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"24 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1455-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigated the shear strengths (that is, the ultimate strength, post-ultimate residual strength and failure strength) and shear transfer mechanism of cold joints after experiencing high-cycle fatigue loading and/or precracking. Twelve cold joint push-off specimens with naturally smooth interfaces were cast and tested. Six of these specimens were directly subjected to push-off tests without any prior treatment, serving as control specimens. Two specimens were intentionally precracked, while the remaining four specimens underwent two million constant amplitude load cycles, before the push-off test. Push-off test results indicate that the effect of fatigue loading on shear strengths can be disregarded. Precracking has very little influence upon the residual strength and the failure strength, but it significantly reduces the ultimate strength to a level comparable to the residual strength. Moreover, this paper identified a new interface failure mode and presented complete interface shear load-displacement curves, revealing the shear transfer mechanism at the interface. This mechanism provides a clear explanation for the aforementioned effect on the shear strengths. Besides, building upon this mechanism and through a force-balance analysis, the equations are proposed for predicting the residual strength and failure strength of cold joints, which are found to reliably yield accurate calculation results.

疲劳加载和预裂对冷接缝界面剪力传递的影响
本文研究了冷接头在经历高循环疲劳加载和/或预开裂后的剪切强度(即极限强度、极限后残余强度和破坏强度)和剪切传递机制。本文铸造并测试了 12 个具有自然光滑界面的冷接缝推移试样。其中六个试样作为对照试样,未经任何预处理就直接进行了推移试验。两个试样被有意预裂,其余四个试样在推移试验前经历了 200 万次恒定振幅载荷循环。推移试验结果表明,疲劳加载对剪切强度的影响可以忽略不计。预裂纹对残余强度和破坏强度的影响很小,但会显著降低极限强度,使其达到与残余强度相当的水平。此外,本文还确定了一种新的界面破坏模式,并给出了完整的界面剪切荷载-位移曲线,揭示了界面的剪切传递机制。这一机制清楚地解释了上述对剪切强度的影响。此外,在这一机制的基础上,通过力平衡分析,提出了预测冷接缝残余强度和破坏强度的方程,发现这些方程能可靠地得出精确的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
KSCE Journal of Civil Engineering
KSCE Journal of Civil Engineering ENGINEERING, CIVIL-
CiteScore
4.00
自引率
9.10%
发文量
329
审稿时长
4.8 months
期刊介绍: The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields. The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信