Yuan Pan, Shuang-xi Zhou, Jing-yuan Guan, Qing Wang, Yang Ding
{"title":"Concrete Crack Identification Framework Using Optimized Unet and I–V Fusion Algorithm for Infrastructure","authors":"Yuan Pan, Shuang-xi Zhou, Jing-yuan Guan, Qing Wang, Yang Ding","doi":"10.1007/s12205-024-0371-6","DOIUrl":null,"url":null,"abstract":"<p>Currently, most of the concrete crack detection models proposed mainly rely on a single deep learning method, whose performance is limited. To solve the problem, this work presents a deep learning framework for crack identification of concrete. First, a histogram equalization method is adopted to processed the original image, which can effectively enhance the contrast and brightness. Then, to extract effective features of the crack, multiple filters are employed for crack detection, which fusion with original data. In addition, the Unet network is employed as the base classifier for initial diagnosis of concrete crack. To raise the extraction precision, enhanced attention mechanism module is applied to the Unet model for parameter optimization. The combination of Dice function and cross-entropy loss function is applied to evaluate the model performance. The voting integration algorithm is utilized to each prediction result for the decision of the final prediction result. Finally, to demonstrate the effectiveness of the proposed method, a total of 608 steel fiber concrete crack images are collected from laboratory. The results indicate that the proposed deep learning framework offers the optimal comprehensive recognition performance.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"3 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-0371-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, most of the concrete crack detection models proposed mainly rely on a single deep learning method, whose performance is limited. To solve the problem, this work presents a deep learning framework for crack identification of concrete. First, a histogram equalization method is adopted to processed the original image, which can effectively enhance the contrast and brightness. Then, to extract effective features of the crack, multiple filters are employed for crack detection, which fusion with original data. In addition, the Unet network is employed as the base classifier for initial diagnosis of concrete crack. To raise the extraction precision, enhanced attention mechanism module is applied to the Unet model for parameter optimization. The combination of Dice function and cross-entropy loss function is applied to evaluate the model performance. The voting integration algorithm is utilized to each prediction result for the decision of the final prediction result. Finally, to demonstrate the effectiveness of the proposed method, a total of 608 steel fiber concrete crack images are collected from laboratory. The results indicate that the proposed deep learning framework offers the optimal comprehensive recognition performance.
期刊介绍:
The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields.
The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering