Novel terminal region computation method for quasi-infinite horizon NMPC

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Guilherme Augusto Silva de Souza, Darci Odloak
{"title":"Novel terminal region computation method for quasi-infinite horizon NMPC","authors":"Guilherme Augusto Silva de Souza,&nbsp;Darci Odloak","doi":"10.1016/j.compchemeng.2024.108819","DOIUrl":null,"url":null,"abstract":"<div><p>An algorithm for invariant region characterization for a nonlinear system controlled by an LQR is proposed. The quasi-infinite horizon nonlinear model predictive controller formulation is extended for zone control with optimizing targets. The novel invariant region characterization proposed promotes hypervolume gains of up to two orders of magnitude for an unstable CSTR. Extension of the NMPC formulation to the case of zone control with optimizing targets improves the formulation’s practical deployment capability. A comparison between QIH-NMPC and NMPC with a terminal equality constraint is drawn, showing considerable closed-loop performance loss when employing a terminal equality constraint. The proposed invariant region shows feasibility set gains from the proposed invariant region characterization, when compared to a recent approach. Closed-loop simulations of both controllers from the enlarged feasibility set show how sensible the closed-loop performance is to one infeasible controller iteration.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"189 ","pages":"Article 108819"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002370","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

An algorithm for invariant region characterization for a nonlinear system controlled by an LQR is proposed. The quasi-infinite horizon nonlinear model predictive controller formulation is extended for zone control with optimizing targets. The novel invariant region characterization proposed promotes hypervolume gains of up to two orders of magnitude for an unstable CSTR. Extension of the NMPC formulation to the case of zone control with optimizing targets improves the formulation’s practical deployment capability. A comparison between QIH-NMPC and NMPC with a terminal equality constraint is drawn, showing considerable closed-loop performance loss when employing a terminal equality constraint. The proposed invariant region shows feasibility set gains from the proposed invariant region characterization, when compared to a recent approach. Closed-loop simulations of both controllers from the enlarged feasibility set show how sensible the closed-loop performance is to one infeasible controller iteration.

Abstract Image

准无限视界 NMPC 的新型终端区域计算方法
提出了一种由 LQR 控制的非线性系统的不变区域表征算法。准无限视界非线性模型预测控制器公式被扩展用于具有优化目标的区域控制。所提出的新型不变量区域特征描述可使不稳定的 CSTR 获得高达两个数量级的超体积增益。将 NMPC 方案扩展到具有优化目标的区域控制,提高了该方案的实际应用能力。对 QIH-NMPC 和带有终端相等约束的 NMPC 进行了比较,结果表明,当采用终端相等约束时,闭环性能损失相当大。与最近的一种方法相比,拟议的不变区域特征描述显示了可行性集收益。根据扩大的可行性集对两个控制器进行的闭环模拟显示,闭环性能对一次不可行控制器迭代的影响是多么明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信