Conformal maps and superfluid vortex dynamics on curved and bounded surfaces: The case of an elliptical boundary

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Matteo Caldara, Andrea Richaud, Pietro Massignan, Alexander L. Fetter
{"title":"Conformal maps and superfluid vortex dynamics on curved and bounded surfaces: The case of an elliptical boundary","authors":"Matteo Caldara, Andrea Richaud, Pietro Massignan, Alexander L. Fetter","doi":"10.21468/scipostphys.17.2.039","DOIUrl":null,"url":null,"abstract":"Recent advances in cold-atom platforms have made real-time dynamics accessible, renewing interest in the motion of superfluid vortices in two-dimensional domains. Here we show that the energy and the trajectories of arbitrary vortex configurations may be computed on a complicated (curved or bounded) surface, provided that one knows a conformal map that links the latter to a simpler domain (like the full plane, or a circular boundary). We also prove that Hamilton's equations based on the vortex energy agree with the complex dynamical equations for the vortex dynamics, demonstrating that the vortex trajectories are constant-energy curves. We use these ideas to study the dynamics of vortices in a two-dimensional incompressible superfluid with an elliptical boundary, and we derive an analytical expression for the complex potential describing the hydrodynamic flow throughout the fluid. For a vortex inside an elliptical boundary, the orbits are nearly self-similar ellipses.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"6 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphys.17.2.039","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in cold-atom platforms have made real-time dynamics accessible, renewing interest in the motion of superfluid vortices in two-dimensional domains. Here we show that the energy and the trajectories of arbitrary vortex configurations may be computed on a complicated (curved or bounded) surface, provided that one knows a conformal map that links the latter to a simpler domain (like the full plane, or a circular boundary). We also prove that Hamilton's equations based on the vortex energy agree with the complex dynamical equations for the vortex dynamics, demonstrating that the vortex trajectories are constant-energy curves. We use these ideas to study the dynamics of vortices in a two-dimensional incompressible superfluid with an elliptical boundary, and we derive an analytical expression for the complex potential describing the hydrodynamic flow throughout the fluid. For a vortex inside an elliptical boundary, the orbits are nearly self-similar ellipses.
曲面和有界曲面上的共形映射和超流体涡旋动力学:椭圆边界的情况
冷原子平台的最新进展使得实时动力学成为可能,重新激发了人们对二维领域中超流体涡旋运动的兴趣。在这里,我们证明了任意涡旋配置的能量和轨迹都可以在复杂(弯曲或有界)表面上计算,前提是我们知道将后者与更简单的域(如全平面或圆形边界)连接起来的保角映射。我们还证明了基于涡旋能量的汉密尔顿方程与涡旋动力学的复杂动力学方程一致,证明了涡旋轨迹是恒能量曲线。我们利用这些思想研究了具有椭圆边界的二维不可压缩超流体中的涡旋动力学,并推导出了描述整个流体流体动力流的复势的解析表达式。对于椭圆边界内的涡旋,其轨道几乎是自相似椭圆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SciPost Physics
SciPost Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
8.20
自引率
12.70%
发文量
315
审稿时长
10 weeks
期刊介绍: SciPost Physics publishes breakthrough research articles in the whole field of Physics, covering Experimental, Theoretical and Computational approaches. Specialties covered by this Journal: - Atomic, Molecular and Optical Physics - Experiment - Atomic, Molecular and Optical Physics - Theory - Biophysics - Condensed Matter Physics - Experiment - Condensed Matter Physics - Theory - Condensed Matter Physics - Computational - Fluid Dynamics - Gravitation, Cosmology and Astroparticle Physics - High-Energy Physics - Experiment - High-Energy Physics - Theory - High-Energy Physics - Phenomenology - Mathematical Physics - Nuclear Physics - Experiment - Nuclear Physics - Theory - Quantum Physics - Statistical and Soft Matter Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信