Small deviation estimates and small ball probabilities for geodesics in last passage percolation

IF 0.8 2区 数学 Q2 MATHEMATICS
Riddhipratim Basu, Manan Bhatia
{"title":"Small deviation estimates and small ball probabilities for geodesics in last passage percolation","authors":"Riddhipratim Basu, Manan Bhatia","doi":"10.1007/s11856-024-2635-8","DOIUrl":null,"url":null,"abstract":"<p>For the exactly solvable model of exponential last passage percolation on ℤ<sup>2</sup>, consider the geodesic Γ<sub><i>n</i></sub> joining (0, 0) and (<i>n, n</i>) for large <i>n</i>. It is well known that the transversal fluctuation of Γ<sub><i>n</i></sub> around the line <i>x</i> = <i>y</i> is <i>n</i><sup>2/3+<i>o</i>(1)</sup> with high probability. We obtain the exponent governing the decay of the small ball probability for Γ<sub><i>n</i></sub> and establish that for small <i>δ</i>, the probability that Γ<sub><i>n</i></sub> is contained in a strip of width <i>δn</i><sup>2/3</sup> around the diagonal is exp(−Θ(<i>δ</i><sup>−3/2</sup>)) uniformly in high <i>n</i>. We also obtain optimal small deviation estimates for the one point distribution of the geodesic showing that for <span>\\({t}\\over{2n}\\)</span> bounded away from 0 and 1, we have ℙ(∣<i>x</i>(<i>t</i>) − <i>y</i>(<i>t</i>)∣ ≤ <i>δn</i><sup>2/3</sup>) = Θ(<i>δ</i>) uniformly in high <i>n</i>, where (<i>x</i>(<i>t</i>), <i>y</i>(<i>t</i>)) is the unique point where Γ<sub><i>n</i></sub> intersects the line <i>x</i> + <i>y</i> = <i>t</i>. Our methods are expected to go through for other exactly solvable models of planar last passage percolation and also, upon taking the <i>n</i> → ∞ limit, expected to provide analogous estimates for geodesics in the directed landscape.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2635-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For the exactly solvable model of exponential last passage percolation on ℤ2, consider the geodesic Γn joining (0, 0) and (n, n) for large n. It is well known that the transversal fluctuation of Γn around the line x = y is n2/3+o(1) with high probability. We obtain the exponent governing the decay of the small ball probability for Γn and establish that for small δ, the probability that Γn is contained in a strip of width δn2/3 around the diagonal is exp(−Θ(δ−3/2)) uniformly in high n. We also obtain optimal small deviation estimates for the one point distribution of the geodesic showing that for \({t}\over{2n}\) bounded away from 0 and 1, we have ℙ(∣x(t) − y(t)∣ ≤ δn2/3) = Θ(δ) uniformly in high n, where (x(t), y(t)) is the unique point where Γn intersects the line x + y = t. Our methods are expected to go through for other exactly solvable models of planar last passage percolation and also, upon taking the n → ∞ limit, expected to provide analogous estimates for geodesics in the directed landscape.

最后通道渗流中大地线的小偏差估计和小球概率
对于ℤ2 上指数最后通道渗流的精确可解模型,考虑大 n 时连接 (0, 0) 和 (n, n) 的大地线 Γn。众所周知,Γn 绕直线 x = y 的横向波动为 n2/3+o(1),概率很高。我们得到了控制 Γn 小球概率衰减的指数,并确定对于小 δ,Γn 包含在对角线周围宽度为 δn2/3 的条带中的概率是 exp(-Θ(δ-3/2)),均匀为高 n。我们还获得了大地线一点分布的最优小偏差估计,表明对于远离 0 和 1 的 \({t}\over{2n}\),我们有 ℙ(∣x(t)-y(t)∣≤δn2/3) = Θ(δ),均匀地在高 n 中,其中 (x(t), y(t)) 是 Γn 与直线 x + y = t 相交的唯一点。我们的方法有望适用于平面最后通道渗滤的其他精确可解模型,而且在取 n → ∞ 极限时,有望为有向景观中的大地线提供类似估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信