Through-Thickness Modelling of Metal Rolling using Multiple-Scale Asymptotics

Mozhdeh Erfanian, Edward James Brambley, Francis Flanagan, Doireann O'Kiely, Alison O'Connor
{"title":"Through-Thickness Modelling of Metal Rolling using Multiple-Scale Asymptotics","authors":"Mozhdeh Erfanian, Edward James Brambley, Francis Flanagan, Doireann O'Kiely, Alison O'Connor","doi":"arxiv-2408.01347","DOIUrl":null,"url":null,"abstract":"A new semi-analytic model of the metal rolling processes is presented and\nvalidated against finite element simulations. The model generalizes the\nclassical Slab Method of cold rolling, and for the first time is able to\npredict the through-thickness stress and strain oscillations present in\nlong-aspect-ratio roll gaps. The model is based on the asymptotic Method of\nMultiple-Scales, with the systematic assumptions of a long thin roll gap and a\ncomparably small Coulomb friction coefficient. The leading-order solution\nvaries only on the long length scale of the roll gap length $\\hat{\\ell}$, and\nmatches with Slab Theory. The next-order correction varies on both the long\nlength scale and the short length scale of the workpiece thickness\n$2\\hat{h}_0$, and reveals rapid stress and strain oscillation both in the\nrolling direction and through-thickness. For this initial derivation, the model\nassumes a rigid perfectly-plastic material behaviour. Despite these strong\nassumptions, the model is shown to compare well with finite element simulations\nusing realistic elasticity and hardening material models. These assumptions\nfacilitate the simplest possible model to provide a foundational understanding\nof the complex through-thickness behaviour observed in the finite element\nsimulations, while requiring an order of only seconds to compute. Matlab code\nfor evaluating the model is provided in the supplementary material.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new semi-analytic model of the metal rolling processes is presented and validated against finite element simulations. The model generalizes the classical Slab Method of cold rolling, and for the first time is able to predict the through-thickness stress and strain oscillations present in long-aspect-ratio roll gaps. The model is based on the asymptotic Method of Multiple-Scales, with the systematic assumptions of a long thin roll gap and a comparably small Coulomb friction coefficient. The leading-order solution varies only on the long length scale of the roll gap length $\hat{\ell}$, and matches with Slab Theory. The next-order correction varies on both the long length scale and the short length scale of the workpiece thickness $2\hat{h}_0$, and reveals rapid stress and strain oscillation both in the rolling direction and through-thickness. For this initial derivation, the model assumes a rigid perfectly-plastic material behaviour. Despite these strong assumptions, the model is shown to compare well with finite element simulations using realistic elasticity and hardening material models. These assumptions facilitate the simplest possible model to provide a foundational understanding of the complex through-thickness behaviour observed in the finite element simulations, while requiring an order of only seconds to compute. Matlab code for evaluating the model is provided in the supplementary material.
利用多尺度渐近法建立金属轧制的厚度模型
本文介绍了一种新的金属轧制过程半解析模型,并通过有限元模拟进行了验证。该模型推广了经典的冷轧板坯法,首次能够预测长宽比轧制间隙中存在的通厚应力和应变振荡。该模型基于多尺度渐近法,系统假定轧辊间隙很长很薄,库仑摩擦系数很小。前阶求解只在辊隙长度 $\hat{\ell}$ 的长尺度上变化,并与板层理论相匹配。次阶修正在工件厚度的长尺度和短尺度上都有变化,并揭示了轧制方向和厚度方向上的快速应力和应变振荡。为了进行初步推导,模型假定材料行为为刚性完全塑性。尽管有这些强有力的假设,该模型仍能与采用现实弹性和硬化材料模型的有限元模拟进行很好的比较。这些假设使得最简单的模型也能提供对有限元模拟中观察到的复杂厚度行为的基本理解,而计算时间仅需几秒钟。评估模型的 Matlab 代码见补充材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信