Proof of a $K$-theoretic polynomial conjecture of Monical, Pechenik, and Searles

Laura Pierson
{"title":"Proof of a $K$-theoretic polynomial conjecture of Monical, Pechenik, and Searles","authors":"Laura Pierson","doi":"arxiv-2408.01390","DOIUrl":null,"url":null,"abstract":"As part of a program to develop $K$-theoretic analogues of combinatorially\nimportant polynomials, Monical, Pechenik, and Searles (2021) proved two\nexpansion formulas $\\overline{\\mathfrak{A}}_a = \\sum_b\nQ_b^a(\\beta)\\overline{\\mathfrak{P}}_b$ and $\\overline{\\mathfrak{Q}}_a = \\sum_b\nM_b^a(\\beta)\\overline{\\mathfrak{F}}_b,$ where each of\n$\\overline{\\mathfrak{A}}_a$, $\\overline{\\mathfrak{P}}_a$,\n$\\overline{\\mathfrak{Q}}_a$ and $\\overline{\\mathfrak{F}}_a$ is a family of\npolynomials that forms a basis for $\\mathbb{Z}[x_1,\\dots,x_n][\\beta]$ indexed\nby weak compositions $a,$ and $Q_b^a(\\beta)$ and $M_b^a(\\beta)$ are monomials\nin $\\beta$ for each pair $(a,b)$ of weak compositions. The polynomials\n$\\overline{\\mathfrak{A}}_a$ are the Lascoux atoms, $\\overline{\\mathfrak{P}}_a$\nare the kaons, $\\overline{\\mathfrak{Q}}_a$ are the quasiLascoux polynomials,\nand $\\overline{\\mathfrak{F}}_a$ are the glide polynomials; these are\nrespectively the $K$-analogues of the Demazure atoms $\\mathfrak{A}_a$, the\nfundamental particles $\\mathfrak{P}_a$, the quasikey polynomials\n$\\mathfrak{Q}_a$, and the fundamental slide polynomials $\\mathfrak{F}_a$.\nMonical, Pechenik, and Searles conjectured that for any fixed $a,$ $\\sum_b\nQ_b^a(-1), \\sum_b M_b^a(-1) \\in \\{0,1\\},$ where $b$ ranges over all weak\ncompositions. We prove this conjecture using a sign-reversing involution.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As part of a program to develop $K$-theoretic analogues of combinatorially important polynomials, Monical, Pechenik, and Searles (2021) proved two expansion formulas $\overline{\mathfrak{A}}_a = \sum_b Q_b^a(\beta)\overline{\mathfrak{P}}_b$ and $\overline{\mathfrak{Q}}_a = \sum_b M_b^a(\beta)\overline{\mathfrak{F}}_b,$ where each of $\overline{\mathfrak{A}}_a$, $\overline{\mathfrak{P}}_a$, $\overline{\mathfrak{Q}}_a$ and $\overline{\mathfrak{F}}_a$ is a family of polynomials that forms a basis for $\mathbb{Z}[x_1,\dots,x_n][\beta]$ indexed by weak compositions $a,$ and $Q_b^a(\beta)$ and $M_b^a(\beta)$ are monomials in $\beta$ for each pair $(a,b)$ of weak compositions. The polynomials $\overline{\mathfrak{A}}_a$ are the Lascoux atoms, $\overline{\mathfrak{P}}_a$ are the kaons, $\overline{\mathfrak{Q}}_a$ are the quasiLascoux polynomials, and $\overline{\mathfrak{F}}_a$ are the glide polynomials; these are respectively the $K$-analogues of the Demazure atoms $\mathfrak{A}_a$, the fundamental particles $\mathfrak{P}_a$, the quasikey polynomials $\mathfrak{Q}_a$, and the fundamental slide polynomials $\mathfrak{F}_a$. Monical, Pechenik, and Searles conjectured that for any fixed $a,$ $\sum_b Q_b^a(-1), \sum_b M_b^a(-1) \in \{0,1\},$ where $b$ ranges over all weak compositions. We prove this conjecture using a sign-reversing involution.
证明莫尼卡尔、佩切尼克和塞尔的 K$ 理论多项式猜想
作为开发重要组合多项式的 $K$ 理论类似物计划的一部分,莫尼卡尔、佩切尼克和塞尔斯(2021)证明了两个展开式 $overline{\mathfrak{A}}_a = \sum_bQ_b^a(\)、和 Searles (2021) 证明了两个展开式 $overline\{mathfrak{A}}_a = \sum_bQ_b^a(\beta)\overline{mathfrak{P}}_b$ 和 $overline\{mathfrak{Q}}_a = \sum_bM_b^a(\beta)\overline\{mathfrak{F}}_b、其中 $overline{mathfrak{A}}_a$、$overline{mathfrak{P}}_a$、$overline{mathfrak{Q}}_a$ 和 $overline{mathfrak{F}}_a$ 中的每一个都是构成 $\mathbb{Z}[x_1、\而 $Q_b^a(\beta)$ 和 $M_b^a(\beta)$ 是 $\beta$ 中每一对 $(a,b)$ 弱组合的单项式。多项式$overline{/mathfrak{A}}_a$是拉斯科原子,$overline{/mathfrak{P}}_a$是高子,$overline{/mathfrak{Q}}_a$是准拉斯科多项式,而$overline{/mathfrak{F}}_a$是滑翔多项式;它们分别是德马祖原子 $/mathfrak{A}_a$、基本粒子 $/mathfrak{P}_a$、准基多项式 $/mathfrak{Q}_a$和基本滑动多项式 $\mathfrak{F}_a$ 的 $K$-analogues 。莫尼卡尔、佩切尼克和塞尔猜想,对于任何固定的 $a,$\sum_bQ_b^a(-1), \sum_b M_b^a(-1) \ in \{0,1\}, $ 其中 $b$ 的范围是所有弱组合。我们用符号反转来证明这个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信