On exponentiality of automorphisms of ${\bf A}^n$ of order $p$ in characteristic $p>0$

Shigeru Kuroda
{"title":"On exponentiality of automorphisms of ${\\bf A}^n$ of order $p$ in characteristic $p>0$","authors":"Shigeru Kuroda","doi":"arxiv-2408.02204","DOIUrl":null,"url":null,"abstract":"Let $X$ be an integral affine scheme of characteristic $p>0$, and $\\sigma $ a\nnon-identity automorphism of $X$. If $\\sigma $ is $\\textit{exponential}$, i.e.,\ninduced from a ${\\bf G}_a$-action on $X$, then $\\sigma $ is obviously of order\n$p$. It is easy to see that the converse is not true in general. In fact, there\nexists $X$ which admits an automorphism of order $p$, but admits no non-trivial\n${\\bf G}_a$-actions. However, the situation is not clear in the case where $X$\nis the affine space ${\\bf A}_R^n$, because ${\\bf A}_R^n$ admits various ${\\bf\nG}_a$-actions as well as automorphisms of order $p$. In this paper, we study exponentiality of automorphisms of ${\\bf A}_R^n$ of\norder $p$, where the difficulty stems from the non-uniqueness of ${\\bf\nG}_a$-actions inducing an exponential automorphism. Our main results are as\nfollows. (1) We show that the triangular automorphisms of ${\\bf A}_R^n$ of order $p$\nare exponential in some low-dimensional cases. (2) We construct a non-exponential automorphism of ${\\bf A}_R^n$ of order $p$\nfor each $n\\ge 2$. Here, $R$ is any UFD which is not a field. (3) We investigate the ${\\bf G}_a$-actions inducing an elementary\nautomorphism of ${\\bf A}_R^n$.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $X$ be an integral affine scheme of characteristic $p>0$, and $\sigma $ a non-identity automorphism of $X$. If $\sigma $ is $\textit{exponential}$, i.e., induced from a ${\bf G}_a$-action on $X$, then $\sigma $ is obviously of order $p$. It is easy to see that the converse is not true in general. In fact, there exists $X$ which admits an automorphism of order $p$, but admits no non-trivial ${\bf G}_a$-actions. However, the situation is not clear in the case where $X$ is the affine space ${\bf A}_R^n$, because ${\bf A}_R^n$ admits various ${\bf G}_a$-actions as well as automorphisms of order $p$. In this paper, we study exponentiality of automorphisms of ${\bf A}_R^n$ of order $p$, where the difficulty stems from the non-uniqueness of ${\bf G}_a$-actions inducing an exponential automorphism. Our main results are as follows. (1) We show that the triangular automorphisms of ${\bf A}_R^n$ of order $p$ are exponential in some low-dimensional cases. (2) We construct a non-exponential automorphism of ${\bf A}_R^n$ of order $p$ for each $n\ge 2$. Here, $R$ is any UFD which is not a field. (3) We investigate the ${\bf G}_a$-actions inducing an elementary automorphism of ${\bf A}_R^n$.
论特征$p>0$中阶$p$的${\bf A}^n$自形变的指数性
让 $X$ 是特征为 $p>0$ 的积分仿射方案,并且 $\sigma $ 是 $X$ 的非同一性自变量。如果 $\sigma $ 是 $textit{exponential}$,即由 ${\bf G}_a$ 作用于 $X$ 所诱导,那么 $\sigma $ 显然是阶为 $p$的。不难看出,一般情况下相反的情况并不成立。事实上,存在着这样的$X$,它允许一个阶为$p$的自变量,却不允许任何非琐${\bf G}_a$作用。然而,在$X$是仿射空间${\bf A}_R^n$的情况下,情况就不清楚了,因为${\bf A}_R^n$允许各种${\bfG}_a$作用以及阶$p$的自变量。在本文中,我们研究了 ${\bf A}_R^n$ 的阶 $p$ 自形变的指数性,其中的困难源于诱导指数自形变的 ${\bfG}_a$ 作用的非唯一性。我们的主要结果如下(1) 我们证明了在某些低维情况下,阶为 $p$ 的 ${\bf A}_R^n$ 的三角自形变是指数级的。(2) 我们为每个 $n\ge 2$ 构造了 ${\bf A}_R^n$ 的非指数阶自形变。这里,$R$ 是任何非场的 UFD。(3) 我们研究了诱导 ${\bf A}_R^n$ 元自形性的 ${\bf G}_a$ 作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信