Bending-Driven patterning of solid inclusions in lipid membranes: Colloidal assembly and transitions in elastic 2D fluids

Weiyue Xin, Maria M Santore
{"title":"Bending-Driven patterning of solid inclusions in lipid membranes: Colloidal assembly and transitions in elastic 2D fluids","authors":"Weiyue Xin, Maria M Santore","doi":"10.1093/pnasnexus/pgae331","DOIUrl":null,"url":null,"abstract":"Biological or biomimetic membranes are examples within the larger material class of flexible ultrathin lamellae and contoured fluid sheets that require work or energy to impose bending deformations. Bending elasticity also dictates the interactions and assembly of integrated phases or molecular clusters within fluid lamellae, for instance enabling critical cell functions in biomembranes. More broadly, lamella and other thin fluids that integrate dispersed objects, inclusions, and phases behave as contoured 2D colloidal suspensions governed by elastic interactions. To elucidate the breadth of interactions and assembled patterns accessible through elastic interactions, we consider the bending elasticity-driven assembly of 1-10 μm solid plate-shaped Brownian domains (the 2D colloids), integrated into a fluid phospholipid membrane (the 2D fluid). Here the fluid membranes of giant unilamellar vesicles, 20-50 μm in diameter, each contain 4-100 monodisperse plate-domains at an overall solid area fraction of 17±3%. Three types of reversible plate arrangements are found: persistent vesicle-encompassing quasi-hexagonal lattices, persistent closely associated chains or concentrated lattices, and a dynamic disordered state. The interdomain distances evidence combined attractive and repulsive elastic interactions up to 10 μm, far exceeding the ranges of physio-chemical interactions. Bending contributions are controlled through membrane slack (excess area) producing, for a fixed composition, a sharp cooperative multi-body transition in plate arrangement, while domain size and number contribute intricacy.","PeriodicalId":516525,"journal":{"name":"PNAS Nexus","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS Nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgae331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biological or biomimetic membranes are examples within the larger material class of flexible ultrathin lamellae and contoured fluid sheets that require work or energy to impose bending deformations. Bending elasticity also dictates the interactions and assembly of integrated phases or molecular clusters within fluid lamellae, for instance enabling critical cell functions in biomembranes. More broadly, lamella and other thin fluids that integrate dispersed objects, inclusions, and phases behave as contoured 2D colloidal suspensions governed by elastic interactions. To elucidate the breadth of interactions and assembled patterns accessible through elastic interactions, we consider the bending elasticity-driven assembly of 1-10 μm solid plate-shaped Brownian domains (the 2D colloids), integrated into a fluid phospholipid membrane (the 2D fluid). Here the fluid membranes of giant unilamellar vesicles, 20-50 μm in diameter, each contain 4-100 monodisperse plate-domains at an overall solid area fraction of 17±3%. Three types of reversible plate arrangements are found: persistent vesicle-encompassing quasi-hexagonal lattices, persistent closely associated chains or concentrated lattices, and a dynamic disordered state. The interdomain distances evidence combined attractive and repulsive elastic interactions up to 10 μm, far exceeding the ranges of physio-chemical interactions. Bending contributions are controlled through membrane slack (excess area) producing, for a fixed composition, a sharp cooperative multi-body transition in plate arrangement, while domain size and number contribute intricacy.
脂质膜中固体夹杂物的弯曲驱动图案化:弹性二维流体中的胶体组装与转变
生物或仿生膜是柔性超薄薄片和轮廓流体片这一大类材料中的一个例子,它们需要做功或能量来施加弯曲变形。弯曲弹性还决定了流体薄片内集成相或分子团的相互作用和组装,例如,在生物膜中实现关键的细胞功能。从更广泛的意义上讲,整合了分散物体、夹杂物和相的薄层流体和其他薄层流体的行为就像受弹性相互作用支配的轮廓二维胶体悬浮液。为了阐明通过弹性相互作用可获得的相互作用和组装模式的广度,我们考虑了 1-10 μm 的固体板状布朗畴(二维胶体)在弯曲弹性驱动下的组装,并将其整合到流体磷脂膜(二维流体)中。在这里,直径为 20-50 μm 的巨型单拉米尔囊泡的流体膜各包含 4-100 个单分散的板状结构域,总固体面积分数为 17±3%。发现了三种类型的可逆板块排列:持续存在的囊泡包围准六边形晶格、持续存在的紧密联系链或集中晶格以及动态无序状态。域间距离证明了高达 10 μm 的吸引力和排斥力弹性相互作用,远远超出了物理化学相互作用的范围。弯曲作用通过膜松弛(多余面积)来控制,在固定的成分下,板块排列中会产生尖锐的合作多体转换,而域的大小和数量则会产生复杂的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信