{"title":"Homotopy Quotients and Comodules of Supercommutative Hopf Algebras","authors":"Thorsten Heidersdorf, Rainer Weissauer","doi":"10.1007/s10485-024-09781-0","DOIUrl":null,"url":null,"abstract":"<div><p>We study model structures on the category of comodules of a supercommutative Hopf algebra <i>A</i> over fields of characteristic 0. Given a graded Hopf algebra quotient <span>\\(A \\rightarrow B\\)</span> satisfying some finiteness conditions, the Frobenius tensor category <span>\\({\\mathcal {D}}\\)</span> of graded <i>B</i>-comodules with its stable model structure induces a monoidal model structure on <span>\\({\\mathcal {C}}\\)</span>. We consider the corresponding homotopy quotient <span>\\(\\gamma : {\\mathcal {C}} \\rightarrow Ho {\\mathcal {C}}\\)</span> and the induced quotient <span>\\({\\mathcal {T}} \\rightarrow Ho {\\mathcal {T}}\\)</span> for the tensor category <span>\\({\\mathcal {T}}\\)</span> of finite dimensional <i>A</i>-comodules. Under some mild conditions we prove vanishing and finiteness theorems for morphisms in <span>\\(Ho {\\mathcal {T}}\\)</span>. We apply these results in the <i>Rep</i>(<i>GL</i>(<i>m</i>|<i>n</i>))-case and study its homotopy category <span>\\(Ho {\\mathcal {T}}\\)</span> associated to the parabolic subgroup of upper triangular block matrices. We construct cofibrant replacements and show that the quotient of <span>\\(Ho{\\mathcal {T}}\\)</span> by the negligible morphisms is again the representation category of a supergroup scheme.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 5","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-024-09781-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09781-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study model structures on the category of comodules of a supercommutative Hopf algebra A over fields of characteristic 0. Given a graded Hopf algebra quotient \(A \rightarrow B\) satisfying some finiteness conditions, the Frobenius tensor category \({\mathcal {D}}\) of graded B-comodules with its stable model structure induces a monoidal model structure on \({\mathcal {C}}\). We consider the corresponding homotopy quotient \(\gamma : {\mathcal {C}} \rightarrow Ho {\mathcal {C}}\) and the induced quotient \({\mathcal {T}} \rightarrow Ho {\mathcal {T}}\) for the tensor category \({\mathcal {T}}\) of finite dimensional A-comodules. Under some mild conditions we prove vanishing and finiteness theorems for morphisms in \(Ho {\mathcal {T}}\). We apply these results in the Rep(GL(m|n))-case and study its homotopy category \(Ho {\mathcal {T}}\) associated to the parabolic subgroup of upper triangular block matrices. We construct cofibrant replacements and show that the quotient of \(Ho{\mathcal {T}}\) by the negligible morphisms is again the representation category of a supergroup scheme.
期刊介绍:
Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant.
Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.