Mining Path Association Rules in Large Property Graphs (with Appendix)

Yuya Sasaki, Panagiotis Karras
{"title":"Mining Path Association Rules in Large Property Graphs (with Appendix)","authors":"Yuya Sasaki, Panagiotis Karras","doi":"arxiv-2408.02029","DOIUrl":null,"url":null,"abstract":"How can we mine frequent path regularities from a graph with edge labels and\nvertex attributes? The task of association rule mining successfully discovers\nregular patterns in item sets and substructures. Still, to our best knowledge,\nthis concept has not yet been extended to path patterns in large property\ngraphs. In this paper, we introduce the problem of path association rule mining\n(PARM). Applied to any \\emph{reachability path} between two vertices within a\nlarge graph, PARM discovers regular ways in which path patterns, identified by\nvertex attributes and edge labels, co-occur with each other. We develop an\nefficient and scalable algorithm PIONEER that exploits an anti-monotonicity\nproperty to effectively prune the search space. Further, we devise\napproximation techniques and employ parallelization to achieve scalable path\nassociation rule mining. Our experimental study using real-world graph data\nverifies the significance of path association rules and the efficiency of our\nsolutions.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How can we mine frequent path regularities from a graph with edge labels and vertex attributes? The task of association rule mining successfully discovers regular patterns in item sets and substructures. Still, to our best knowledge, this concept has not yet been extended to path patterns in large property graphs. In this paper, we introduce the problem of path association rule mining (PARM). Applied to any \emph{reachability path} between two vertices within a large graph, PARM discovers regular ways in which path patterns, identified by vertex attributes and edge labels, co-occur with each other. We develop an efficient and scalable algorithm PIONEER that exploits an anti-monotonicity property to effectively prune the search space. Further, we devise approximation techniques and employ parallelization to achieve scalable path association rule mining. Our experimental study using real-world graph data verifies the significance of path association rules and the efficiency of our solutions.
挖掘大型属性图中的路径关联规则(附录)
如何从带有边标签和顶点属性的图中挖掘频繁路径的规律性?关联规则挖掘任务成功地发现了项目集和子结构中的规则模式。然而,据我们所知,这一概念尚未扩展到大型属性图中的路径模式。本文介绍了路径关联规则挖掘(PARM)问题。PARM 适用于大型图中两个顶点之间的任何 "可达性路径",它能发现由顶点属性和边标签确定的路径模式相互共现的规则方式。我们开发了一种高效、可扩展的算法 PIONEER,它利用反单调性特性有效地剪裁搜索空间。此外,我们还设计了近似技术并采用并行化方法来实现可扩展的路径关联规则挖掘。我们使用真实世界图数据进行的实验研究证明了路径关联规则的重要性和我们解决方案的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信