NeurDB: On the Design and Implementation of an AI-powered Autonomous Database

Zhanhao Zhao, Shaofeng Cai, Haotian Gao, Hexiang Pan, Siqi Xiang, Naili Xing, Gang Chen, Beng Chin Ooi, Yanyan Shen, Yuncheng Wu, Meihui Zhang
{"title":"NeurDB: On the Design and Implementation of an AI-powered Autonomous Database","authors":"Zhanhao Zhao, Shaofeng Cai, Haotian Gao, Hexiang Pan, Siqi Xiang, Naili Xing, Gang Chen, Beng Chin Ooi, Yanyan Shen, Yuncheng Wu, Meihui Zhang","doi":"arxiv-2408.03013","DOIUrl":null,"url":null,"abstract":"Databases are increasingly embracing AI to provide autonomous system\noptimization and intelligent in-database analytics, aiming to relieve end-user\nburdens across various industry sectors. Nonetheless, most existing approaches\nfail to account for the dynamic nature of databases, which renders them\nineffective for real-world applications characterized by evolving data and\nworkloads. This paper introduces NeurDB, an AI-powered autonomous database that\ndeepens the fusion of AI and databases with adaptability to data and workload\ndrift. NeurDB establishes a new in-database AI ecosystem that seamlessly\nintegrates AI workflows within the database. This integration enables efficient\nand effective in-database AI analytics and fast-adaptive learned system\ncomponents. Empirical evaluations demonstrate that NeurDB substantially\noutperforms existing solutions in managing AI analytics tasks, with the\nproposed learned components more effectively handling environmental dynamism\nthan state-of-the-art approaches.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Databases are increasingly embracing AI to provide autonomous system optimization and intelligent in-database analytics, aiming to relieve end-user burdens across various industry sectors. Nonetheless, most existing approaches fail to account for the dynamic nature of databases, which renders them ineffective for real-world applications characterized by evolving data and workloads. This paper introduces NeurDB, an AI-powered autonomous database that deepens the fusion of AI and databases with adaptability to data and workload drift. NeurDB establishes a new in-database AI ecosystem that seamlessly integrates AI workflows within the database. This integration enables efficient and effective in-database AI analytics and fast-adaptive learned system components. Empirical evaluations demonstrate that NeurDB substantially outperforms existing solutions in managing AI analytics tasks, with the proposed learned components more effectively handling environmental dynamism than state-of-the-art approaches.
NeurDB:关于人工智能驱动的自主数据库的设计与实现
数据库正越来越多地采用人工智能来提供自主系统优化和智能数据库内分析,旨在减轻各行业领域终端用户的负担。然而,大多数现有方法都没有考虑到数据库的动态特性,这使得它们在以不断变化的数据和工作量为特征的现实世界应用中效果不佳。本文介绍的 NeurDB 是一种人工智能驱动的自主数据库,它深化了人工智能与数据库的融合,具有对数据和工作负载漂移的适应性。NeurDB 建立了一个新的数据库内人工智能生态系统,将人工智能工作流无缝集成到数据库中。这种集成实现了高效的数据库内人工智能分析和快速自适应的学习系统组件。实证评估表明,NeurDB 在管理人工智能分析任务方面的性能大大优于现有解决方案,与最先进的方法相比,所提出的学习组件能更有效地处理环境动态变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信