CREST: Effectively Compacting a Datastore For Retrieval-Based Speculative Decoding

Sophia Ho, Jinsol Park, Patrick Wang
{"title":"CREST: Effectively Compacting a Datastore For Retrieval-Based Speculative Decoding","authors":"Sophia Ho, Jinsol Park, Patrick Wang","doi":"arxiv-2408.04678","DOIUrl":null,"url":null,"abstract":"We present CREST (Compact Retrieval-Based Speculative Decoding), a redesign\nof REST that allows it to be effectively \"compacted\". REST is a drafting\ntechnique for speculative decoding based on retrieving exact n-gram matches of\nthe most recent n tokens generated by the target LLM from a datastore. The key\nidea of CREST is to only store a subset of the smallest and most common n-grams\nin the datastore with the hope of achieving comparable performance with less\nstorage space. We found that storing a subset of n-grams both reduces storage\nspace and improves performance. CREST matches REST's accepted token length with\n10.6-13.5x less storage space and achieves a 16.5-17.1% higher acceptance\nlength than REST using the same storage space on the HumanEval and MT Bench\nbenchmarks.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present CREST (Compact Retrieval-Based Speculative Decoding), a redesign of REST that allows it to be effectively "compacted". REST is a drafting technique for speculative decoding based on retrieving exact n-gram matches of the most recent n tokens generated by the target LLM from a datastore. The key idea of CREST is to only store a subset of the smallest and most common n-grams in the datastore with the hope of achieving comparable performance with less storage space. We found that storing a subset of n-grams both reduces storage space and improves performance. CREST matches REST's accepted token length with 10.6-13.5x less storage space and achieves a 16.5-17.1% higher acceptance length than REST using the same storage space on the HumanEval and MT Bench benchmarks.
CREST:有效压缩数据存储,实现基于检索的推测性解码
我们提出了 CREST(基于紧凑检索的推测性解码),它是对 REST 的重新设计,可以有效地将其 "紧凑化"。REST 是一种用于推测解码的起草技术,它基于从数据存储中检索目标 LLM 最近生成的 n 个词组的精确 n-gram 匹配。CREST 的关键理念是在数据存储中只存储最小和最常见的 n 个词组的子集,希望以较少的存储空间实现相当的性能。我们发现,存储 n-grams 的子集既能减少存储空间,又能提高性能。在 HumanEval 和 MT Benchbenchmarks 上,CREST 用 10.6-13.5 倍的存储空间达到了 REST 的可接受标记长度,用相同的存储空间实现了比 REST 高 16.5-17.1% 的可接受长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信