Iterative CT Reconstruction via Latent Variable Optimization of Shallow Diffusion Models

Sho Ozaki, Shizuo Kaji, Toshikazu Imae, Kanabu Nawa, Hideomi Yamashita, Keiichi Nakagawa
{"title":"Iterative CT Reconstruction via Latent Variable Optimization of Shallow Diffusion Models","authors":"Sho Ozaki, Shizuo Kaji, Toshikazu Imae, Kanabu Nawa, Hideomi Yamashita, Keiichi Nakagawa","doi":"arxiv-2408.03156","DOIUrl":null,"url":null,"abstract":"Image generative AI has garnered significant attention in recent years. In\nparticular, the diffusion model, a core component of recent generative AI,\nproduces high-quality images with rich diversity. In this study, we propose a\nnovel CT reconstruction method by combining the denoising diffusion\nprobabilistic model with iterative CT reconstruction. In sharp contrast to\nprevious studies, we optimize the fidelity loss of CT reconstruction with\nrespect to the latent variable of the diffusion model, instead of the image and\nmodel parameters. To suppress anatomical structure changes produced by the\ndiffusion model, we shallow the diffusion and reverse processes, and fix a set\nof added noises in the reverse process to make it deterministic during\ninference. We demonstrate the effectiveness of the proposed method through\nsparse view CT reconstruction of 1/10 view projection data. Despite the\nsimplicity of the implementation, the proposed method shows the capability of\nreconstructing high-quality images while preserving the patient's anatomical\nstructure, and outperforms existing methods including iterative reconstruction,\niterative reconstruction with total variation, and the diffusion model alone in\nterms of quantitative indices such as SSIM and PSNR. We also explore further\nsparse view CT using 1/20 view projection data with the same trained diffusion\nmodel. As the number of iterations increases, image quality improvement\ncomparable to that of 1/10 sparse view CT reconstruction is achieved. In\nprinciple, the proposed method can be widely applied not only to CT but also to\nother imaging modalities such as MRI, PET, and SPECT.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image generative AI has garnered significant attention in recent years. In particular, the diffusion model, a core component of recent generative AI, produces high-quality images with rich diversity. In this study, we propose a novel CT reconstruction method by combining the denoising diffusion probabilistic model with iterative CT reconstruction. In sharp contrast to previous studies, we optimize the fidelity loss of CT reconstruction with respect to the latent variable of the diffusion model, instead of the image and model parameters. To suppress anatomical structure changes produced by the diffusion model, we shallow the diffusion and reverse processes, and fix a set of added noises in the reverse process to make it deterministic during inference. We demonstrate the effectiveness of the proposed method through sparse view CT reconstruction of 1/10 view projection data. Despite the simplicity of the implementation, the proposed method shows the capability of reconstructing high-quality images while preserving the patient's anatomical structure, and outperforms existing methods including iterative reconstruction, iterative reconstruction with total variation, and the diffusion model alone in terms of quantitative indices such as SSIM and PSNR. We also explore further sparse view CT using 1/20 view projection data with the same trained diffusion model. As the number of iterations increases, image quality improvement comparable to that of 1/10 sparse view CT reconstruction is achieved. In principle, the proposed method can be widely applied not only to CT but also to other imaging modalities such as MRI, PET, and SPECT.
通过浅层扩散模型的潜变量优化进行迭代 CT 重建
图像生成人工智能近年来备受关注。特别是扩散模型,它是近年来生成式人工智能的核心组成部分,能生成具有丰富多样性的高质量图像。在这项研究中,我们将去噪扩散概率模型与迭代 CT 重建相结合,提出了一种新的 CT 重建方法。与以往的研究相比,我们根据扩散模型的潜变量而不是图像和模型参数来优化 CT 重建的保真度损失。为了抑制扩散模型产生的解剖结构变化,我们浅化了扩散过程和反向过程,并在反向过程中固定了一组附加噪声,使其在推断过程中具有确定性。我们通过对 1/10 视图投影数据进行稀疏视图 CT 重建,证明了所提方法的有效性。尽管实现起来很简单,但所提出的方法显示了在保留病人解剖结构的同时重建高质量图像的能力,并且在 SSIM 和 PSNR 等定量指标方面优于现有的方法,包括迭代重建、全变异迭代重建以及单独的扩散模型。我们还利用 1/20 视图投影数据和同样训练有素的扩散模型探索了更远视图 CT。随着迭代次数的增加,图像质量的提高可与 1/10 稀疏视图 CT 重建相媲美。从原理上讲,所提出的方法不仅可以广泛应用于 CT,还可以应用于其他成像模式,如 MRI、PET 和 SPECT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信