The ring of perfect $p$-permutation bimodules for blocks with cyclic defect groups

Robert Boltje, Nariel Monteiro
{"title":"The ring of perfect $p$-permutation bimodules for blocks with cyclic defect groups","authors":"Robert Boltje, Nariel Monteiro","doi":"arxiv-2408.04134","DOIUrl":null,"url":null,"abstract":"Let $B$ be a block algebra of a group algebra $FG$ of a finite group $G$ over\na field $F$ of characteristic $p>0$. This paper studies ring theoretic\nproperties of the representation ring $T^\\Delta(B,B)$ of perfect\n$p$-permutation $(B,B)$-bimodules and properties of the $k$-algebra\n$k\\otimes_\\mathbb{Z} T^\\Delta(B,B)$, for a field $k$. We show that if the\nCartan matrix of $B$ has $1$ as an elementary divisor then $[B]$ is not\nprimitive in $T^\\Delta(B,B)$. If $B$ has cyclic defect groups we determine a\nprimitive decomposition of $[B]$ in $T^\\Delta(B,B)$. Moreover, if $k$ is a\nfield of characteristic different from $p$ and $B$ has cyclic defect groups of\norder $p^n$ we describe $k\\otimes_\\mathbb{Z} T^\\Delta(B,B)$ explicitly as a\ndirect product of a matrix algebra and $n$ group algebras.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $B$ be a block algebra of a group algebra $FG$ of a finite group $G$ over a field $F$ of characteristic $p>0$. This paper studies ring theoretic properties of the representation ring $T^\Delta(B,B)$ of perfect $p$-permutation $(B,B)$-bimodules and properties of the $k$-algebra $k\otimes_\mathbb{Z} T^\Delta(B,B)$, for a field $k$. We show that if the Cartan matrix of $B$ has $1$ as an elementary divisor then $[B]$ is not primitive in $T^\Delta(B,B)$. If $B$ has cyclic defect groups we determine a primitive decomposition of $[B]$ in $T^\Delta(B,B)$. Moreover, if $k$ is a field of characteristic different from $p$ and $B$ has cyclic defect groups of order $p^n$ we describe $k\otimes_\mathbb{Z} T^\Delta(B,B)$ explicitly as a direct product of a matrix algebra and $n$ group algebras.
具有循环缺陷群的块的完美 p$-permutation 双模环
设 $B$ 是特征 $p>0$ 的域 $F$ 上有限群 $G$ 的群代数 $FG$ 的一个分块代数。本文研究完全$p$-permutation $(B,B)$双模的表示环$T^\Delta(B,B)$的环论性质,以及$k$-代数$k\otimes_\mathbb{Z}的性质。T^\Delta(B,B)$, 对于一个域 $k$.我们证明,如果 $B$ 的卡尔坦矩阵有 1$ 作为基本除数,那么 $[B]$ 在 $T^\Delta(B,B)$ 中不是原始的。如果 $B$ 有循环缺陷群,我们将确定 $[B]$ 在 $T^\Delta(B,B)$ 中的原始分解。此外,如果 $k$ 是不同于 $p$ 的特征域,并且 $B$ 有秩为 $p^n$ 的循环缺陷群,那么我们将描述 $k\otimes_\mathbb{Z}T^\Delta(B,B)$ 明确地描述为矩阵代数与 $n$ 群代数的直接乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信