$τ$-cluster morphism categories of factor algebras

Maximilian Kaipel
{"title":"$τ$-cluster morphism categories of factor algebras","authors":"Maximilian Kaipel","doi":"arxiv-2408.03818","DOIUrl":null,"url":null,"abstract":"We take a novel lattice-theoretic approach to the $\\tau$-cluster morphism\ncategory $\\mathfrak{T}(A)$ of a finite-dimensional algebra $A$ and define the\ncategory via the lattice of torsion classes $\\mathrm{tors } A$. Using the\nlattice congruence induced by an ideal $I$ of $A$ we establish a functor $F_I:\n\\mathfrak{T}(A) \\to \\mathfrak{T}(A/I)$ and if $\\mathrm{tors } A$ is finite an\ninclusion $\\mathcal{I}: \\mathfrak{T}(A/I) \\to \\mathfrak{T}(A)$. We characterise\nwhen these functors are full, faithful and adjoint. As a consequence we find a\nnew family of algebras for which $\\mathfrak{T}(A)$ admits a faithful group\nfunctor.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We take a novel lattice-theoretic approach to the $\tau$-cluster morphism category $\mathfrak{T}(A)$ of a finite-dimensional algebra $A$ and define the category via the lattice of torsion classes $\mathrm{tors } A$. Using the lattice congruence induced by an ideal $I$ of $A$ we establish a functor $F_I: \mathfrak{T}(A) \to \mathfrak{T}(A/I)$ and if $\mathrm{tors } A$ is finite an inclusion $\mathcal{I}: \mathfrak{T}(A/I) \to \mathfrak{T}(A)$. We characterise when these functors are full, faithful and adjoint. As a consequence we find a new family of algebras for which $\mathfrak{T}(A)$ admits a faithful group functor.
因子代数的τ$-簇形态类别
我们对有限维代数 $A$ 的 $\tau$ 簇形态范畴 $\mathfrak{T}(A)$ 采用了一种新颖的晶格理论方法,并通过扭转类的晶格 $\mathrm{tors } 来定义该范畴。A$.利用由 $A$ 的理想 $I$ 引起的晶格全等,我们建立了一个函子 $F_I:\mathfrak{T}(A) \to \mathfrak{T}(A/I)$ ,如果 $\mathrm{tors } A$ 是有限的,那么这个函子就是 $F_I:\mathfrak{T}(A) \to \mathfrak{T}(A/I)$ 。A$ 是有限包含 $\mathcal{I}:\到 \mathfrak{T}(A/I)$。我们将描述这些函数是全函数、忠实函数和邻接函数时的特征。因此,我们发现了一个新的代数家族,对于这个家族,$\mathfrak{T}(A)$ 允许一个忠实的群函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信