Auslander algebras, flag combinatorics and quantum flag varieties

Bernt Tore Jensen, Xiuping Su
{"title":"Auslander algebras, flag combinatorics and quantum flag varieties","authors":"Bernt Tore Jensen, Xiuping Su","doi":"arxiv-2408.04753","DOIUrl":null,"url":null,"abstract":"Let $D$ be the Auslander algebra of $\\mathbb{C}[t]/(t^n)$, which is\nquasi-hereditary, and $\\mathcal{F}_\\Delta$ the subcategory of good $D$-modules.\nFor any $\\mathsf{J}\\subseteq[1, n-1]$, we construct a subcategory\n$\\mathcal{F}_\\Delta(\\mathsf{J})$ of $\\mathcal{F}_\\Delta$ with an exact\nstructure $\\mathcal{E}$. We show that under $\\mathcal{E}$,\n$\\mathcal{F}_\\Delta(\\mathsf{J})$ is Frobenius stably 2-Calabi-Yau and admits a\ncluster structure consisting of cluster tilting objects. This then leads to an\nadditive categorification of the cluster structure on the coordinate ring\n$\\mathbb{C}[\\operatorname{Fl}(\\mathsf{J})]$ of the (partial) flag variety\n$\\operatorname{Fl}(\\mathsf{J})$. We further apply $\\mathcal{F}_\\Delta(\\mathsf{J})$ to study flag combinatorics\nand the quantum cluster structure on the flag variety\n$\\operatorname{Fl}(\\mathsf{J})$. We show that weak and strong separation can be\ndetected by the extension groups $\\operatorname{ext}^1(-, -)$ under\n$\\mathcal{E}$ and the extension groups $\\operatorname{Ext}^1(-,-)$,\nrespectively. We give a interpretation of the quasi-commutation rules of\nquantum minors and identify when the product of two quantum minors is invariant\nunder the bar involution. The combinatorial operations of flips and geometric\nexchanges correspond to certain mutations of cluster tilting objects in\n$\\mathcal{F}_\\Delta(\\mathsf{J})$. We then deduce that any (quantum) minor is\nreachable, when $\\mathsf{J}$ is an interval. Building on our result for the interval case, Geiss-Leclerc-Schr\\\"{o}er's\nresult on the quantum coordinate ring for the open cell of\n$\\operatorname{Fl}(\\mathsf{J})$ and Kang-Kashiwara-Kim-Oh's enhancement of that\nto the integral form, we prove that\n$\\mathbb{C}_q[\\operatorname{Fl}(\\mathsf{J})]$ is a quantum cluster algebra over\n$\\mathbb{C}[q,q^{-1}]$.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $D$ be the Auslander algebra of $\mathbb{C}[t]/(t^n)$, which is quasi-hereditary, and $\mathcal{F}_\Delta$ the subcategory of good $D$-modules. For any $\mathsf{J}\subseteq[1, n-1]$, we construct a subcategory $\mathcal{F}_\Delta(\mathsf{J})$ of $\mathcal{F}_\Delta$ with an exact structure $\mathcal{E}$. We show that under $\mathcal{E}$, $\mathcal{F}_\Delta(\mathsf{J})$ is Frobenius stably 2-Calabi-Yau and admits a cluster structure consisting of cluster tilting objects. This then leads to an additive categorification of the cluster structure on the coordinate ring $\mathbb{C}[\operatorname{Fl}(\mathsf{J})]$ of the (partial) flag variety $\operatorname{Fl}(\mathsf{J})$. We further apply $\mathcal{F}_\Delta(\mathsf{J})$ to study flag combinatorics and the quantum cluster structure on the flag variety $\operatorname{Fl}(\mathsf{J})$. We show that weak and strong separation can be detected by the extension groups $\operatorname{ext}^1(-, -)$ under $\mathcal{E}$ and the extension groups $\operatorname{Ext}^1(-,-)$, respectively. We give a interpretation of the quasi-commutation rules of quantum minors and identify when the product of two quantum minors is invariant under the bar involution. The combinatorial operations of flips and geometric exchanges correspond to certain mutations of cluster tilting objects in $\mathcal{F}_\Delta(\mathsf{J})$. We then deduce that any (quantum) minor is reachable, when $\mathsf{J}$ is an interval. Building on our result for the interval case, Geiss-Leclerc-Schr\"{o}er's result on the quantum coordinate ring for the open cell of $\operatorname{Fl}(\mathsf{J})$ and Kang-Kashiwara-Kim-Oh's enhancement of that to the integral form, we prove that $\mathbb{C}_q[\operatorname{Fl}(\mathsf{J})]$ is a quantum cluster algebra over $\mathbb{C}[q,q^{-1}]$.
奥氏代数、旗组合和量子旗品种
让 $D$ 是$\mathbb{C}[t]/(t^n)$ 的奥斯兰德代数,它是类继承的,而 $\mathcal{F}_\Delta$ 是好 $D$ 模块的子类。对于任意 $\mathsf{J}\subseteq[1, n-1]$, 我们构建了一个具有精确结构 $\mathcal{E}$ 的子类$\mathcal{F}_\Delta(\mathsf{J})$。我们证明在 $\mathcal{E}$ 条件下,$\mathcal{F}_\Delta(\mathsf{J})$ 是弗罗贝尼斯稳定的 2-Calabi-Yau 并允许由簇倾斜对象组成的簇结构。这就导致在(部分)旗变$\operatorname{Fl}(\mathsf{J})$ 的坐标环$\mathbb{C}[\operatorname{Fl}(\mathsf{J})]$ 上的簇结构的附加分类。我们进一步应用 $\mathcal{F}_\Delta(\mathsf{J})$ 来研究旗簇组合学以及旗簇$operatorname{Fl}(\mathsf{J})$ 上的量子簇结构。我们证明,弱分离和强分离可以分别通过$\mathcal{E}$下的扩展群$\operatorname{ext}^1(-, -)$和扩展群$\operatorname{Ext}^1(-,-)$来检测。我们给出了量子微分的准换向规则的解释,并确定了当两个量子微分的乘积在条形内卷下是不变的。翻转和几何交换的组合操作对应于$\mathcal{F}_\Delta(\mathsf{J})$中簇倾斜对象的某些突变。然后我们推导出,当 $\mathsf{J}$ 是一个区间时,任何(量子)小数都是可达到的。基于我们在区间情况下的结果、盖斯-勒克莱尔-施莱尔在$operatorname{Fl}(\mathsf{J})$的开放单元的量子坐标环上的结果,以及康-卡什瓦拉-金-奥(Kang-Kashiwara-Kim-Oh)对积分形式的增强、我们证明$\mathbb{C}_q[\operatorname{Fl}(\mathsf{J})]$ 是一个在$\mathbb{C}[q,q^{-1}]$ 上的量子簇代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信