On endosplit $p$-permutation resolutions and Broué's conjecture for $p$-solvable groups

Sam K. Miller
{"title":"On endosplit $p$-permutation resolutions and Broué's conjecture for $p$-solvable groups","authors":"Sam K. Miller","doi":"arxiv-2408.04094","DOIUrl":null,"url":null,"abstract":"Endosplit $p$-permutation resolutions play an instrumental role in verifying\nBrou\\'{e}'s abelian defect group conjecture in numerous cases. In this article,\nwe give a complete classification of endosplit $p$-permutation resolutions and\nreduce the question of Galois descent of an endosplit $p$-permutation\nresolution to the Galois descent of the module it resolves. This is shown using\ntechniques from the study of endotrivial complexes, the invertible objects of\nthe bounded homotopy category of $p$-permutation modules. As an application, we\nshow that a refinement of Brou\\'{e}'s conjecture proposed by Kessar and\nLinckelmann holds for all blocks of $p$-solvable groups.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Endosplit $p$-permutation resolutions play an instrumental role in verifying Brou\'{e}'s abelian defect group conjecture in numerous cases. In this article, we give a complete classification of endosplit $p$-permutation resolutions and reduce the question of Galois descent of an endosplit $p$-permutation resolution to the Galois descent of the module it resolves. This is shown using techniques from the study of endotrivial complexes, the invertible objects of the bounded homotopy category of $p$-permutation modules. As an application, we show that a refinement of Brou\'{e}'s conjecture proposed by Kessar and Linckelmann holds for all blocks of $p$-solvable groups.
关于可解 p 美元群的内裂 p 美元互变决议和布鲁厄猜想
内分 $p$-permutation 解析在验证布鲁(Brou/'{e})的无边际缺陷群猜想中发挥了重要作用。在本文中,我们给出了内分 $p$-permutation 解析的完整分类,并将内分 $p$-permutation 解析的伽罗瓦后裔问题简化为它所解析的模块的伽罗瓦后裔问题。我们利用研究内琐复数的技术证明了这一点,内琐复数是$p$-permutation模块的有界同调范畴的可逆对象。作为一个应用,我们证明了凯萨和林克尔曼提出的布鲁{e}猜想的细化对于$p$可解群的所有块都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信