relentless: Transparent, reproducible molecular dynamics simulations for optimization

Adithya N Sreenivasan, C. Levi Petix, Zachary M. Sherman, Michael P. Howard
{"title":"relentless: Transparent, reproducible molecular dynamics simulations for optimization","authors":"Adithya N Sreenivasan, C. Levi Petix, Zachary M. Sherman, Michael P. Howard","doi":"arxiv-2408.03213","DOIUrl":null,"url":null,"abstract":"relentless is an open-source Python package that enables the optimization of\nobjective functions computed using molecular dynamics simulations. It has a\nhigh-level, extensible interface for model parametrization; setting up,\nrunning, and analyzing simulations natively in established software packages;\nand gradient-based optimization. We describe the design and implementation of\nrelentless in the context of relative entropy minimization, and we demonstrate\nits abilities to design pairwise interactions between particles that form\ntargeted structures. relentless aims to streamline the development of\ncomputational materials design methodologies and promote the transparency and\nreproducibility of complex workflows integrating molecular dynamics\nsimulations.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

relentless is an open-source Python package that enables the optimization of objective functions computed using molecular dynamics simulations. It has a high-level, extensible interface for model parametrization; setting up, running, and analyzing simulations natively in established software packages; and gradient-based optimization. We describe the design and implementation of relentless in the context of relative entropy minimization, and we demonstrate its abilities to design pairwise interactions between particles that form targeted structures. relentless aims to streamline the development of computational materials design methodologies and promote the transparency and reproducibility of complex workflows integrating molecular dynamics simulations.
relentless:用于优化的透明、可重复的分子动力学模拟
relentless 是一个开源 Python 软件包,用于优化分子动力学模拟计算的目标函数。它拥有高级别的可扩展接口,可用于模型参数化;在成熟软件包中原生设置、运行和分析模拟;以及基于梯度的优化。我们以相对熵最小化为背景描述了 relentless 的设计和实现,并展示了它设计粒子间成对相互作用以形成目标结构的能力。 relentless 旨在简化计算材料设计方法的开发,提高集成分子动力学模拟的复杂工作流的透明度和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信