Multiscale modeling framework of a constrained fluid with complex boundaries using twin neural networks

Peiyuan Gao, George Em Karniadakis, Panos Stinis
{"title":"Multiscale modeling framework of a constrained fluid with complex boundaries using twin neural networks","authors":"Peiyuan Gao, George Em Karniadakis, Panos Stinis","doi":"arxiv-2408.03263","DOIUrl":null,"url":null,"abstract":"The properties of constrained fluids have increasingly gained relevance for\napplications ranging from materials to biology. In this work, we propose a\nmultiscale model using twin neural networks to investigate the properties of a\nfluid constrained between solid surfaces with complex shapes. The atomic scale\nmodel and the mesoscale model are connected by the coarse-grained potential\nwhich is represented by the first neural network. Then we train the second\nneural network model as a surrogate to predict the velocity profile of the\nconstrained fluid with complex boundary conditions at the mesoscale. The effect\nof complex boundary conditions on the fluid dynamics properties and the\naccuracy of the neural network model prediction are systematically\ninvestigated. We demonstrate that the neural network-enhanced multiscale\nframework can connect simulations at atomic scale and mesoscale and reproduce\nthe properties of a constrained fluid at mesoscale. This work provides insight\ninto multiscale model development with the aid of machine learning techniques\nand the developed model can be used for modern nanotechnology applications such\nas enhanced oil recovery and porous materials design.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The properties of constrained fluids have increasingly gained relevance for applications ranging from materials to biology. In this work, we propose a multiscale model using twin neural networks to investigate the properties of a fluid constrained between solid surfaces with complex shapes. The atomic scale model and the mesoscale model are connected by the coarse-grained potential which is represented by the first neural network. Then we train the second neural network model as a surrogate to predict the velocity profile of the constrained fluid with complex boundary conditions at the mesoscale. The effect of complex boundary conditions on the fluid dynamics properties and the accuracy of the neural network model prediction are systematically investigated. We demonstrate that the neural network-enhanced multiscale framework can connect simulations at atomic scale and mesoscale and reproduce the properties of a constrained fluid at mesoscale. This work provides insight into multiscale model development with the aid of machine learning techniques and the developed model can be used for modern nanotechnology applications such as enhanced oil recovery and porous materials design.
利用孪生神经网络构建具有复杂边界的受约束流体的多尺度建模框架
受约束流体的特性在从材料到生物等领域的应用中日益重要。在这项工作中,我们提出了一个使用双神经网络的多尺度模型,用于研究受约束流体在形状复杂的固体表面之间的性质。原子尺度模型和中尺度模型由粗粒度势能连接,粗粒度势能由第一个神经网络表示。然后,我们训练第二个神经网络模型,作为预测具有复杂边界条件的中尺度受约束流体速度曲线的代用模型。我们系统地研究了复杂边界条件对流体动力学特性和神经网络模型预测精度的影响。我们证明了神经网络增强的多尺度框架可以连接原子尺度和中尺度的模拟,并在中尺度上再现受约束流体的特性。这项工作为借助机器学习技术开发多尺度模型提供了启示,所开发的模型可用于现代纳米技术应用,如提高石油采收率和多孔材料设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信