Matrix-Free Finite Volume Kernels on a Dataflow Architecture

Ryuichi Sai, Francois P. Hamon, John Mellor-Crummey, Mauricio Araya-Polo
{"title":"Matrix-Free Finite Volume Kernels on a Dataflow Architecture","authors":"Ryuichi Sai, Francois P. Hamon, John Mellor-Crummey, Mauricio Araya-Polo","doi":"arxiv-2408.03452","DOIUrl":null,"url":null,"abstract":"Fast and accurate numerical simulations are crucial for designing large-scale\ngeological carbon storage projects ensuring safe long-term CO2 containment as a\nclimate change mitigation strategy. These simulations involve solving numerous\nlarge and complex linear systems arising from the implicit Finite Volume (FV)\ndiscretization of PDEs governing subsurface fluid flow. Compounded with highly\ndetailed geomodels, solving linear systems is computationally and memory\nexpensive, and accounts for the majority of the simulation time. Modern memory\nhierarchies are insufficient to meet the latency and bandwidth needs of\nlarge-scale numerical simulations. Therefore, exploring algorithms that can\nleverage alternative and balanced paradigms, such as dataflow and in-memory\ncomputing is crucial. This work introduces a matrix-free algorithm to solve\nFV-based linear systems using a dataflow architecture to significantly minimize\nmemory latency and bandwidth bottlenecks. Our implementation achieves two\norders of magnitude speedup compared to a GPGPU-based reference implementation,\nand up to 1.2 PFlops on a single dataflow device.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fast and accurate numerical simulations are crucial for designing large-scale geological carbon storage projects ensuring safe long-term CO2 containment as a climate change mitigation strategy. These simulations involve solving numerous large and complex linear systems arising from the implicit Finite Volume (FV) discretization of PDEs governing subsurface fluid flow. Compounded with highly detailed geomodels, solving linear systems is computationally and memory expensive, and accounts for the majority of the simulation time. Modern memory hierarchies are insufficient to meet the latency and bandwidth needs of large-scale numerical simulations. Therefore, exploring algorithms that can leverage alternative and balanced paradigms, such as dataflow and in-memory computing is crucial. This work introduces a matrix-free algorithm to solve FV-based linear systems using a dataflow architecture to significantly minimize memory latency and bandwidth bottlenecks. Our implementation achieves two orders of magnitude speedup compared to a GPGPU-based reference implementation, and up to 1.2 PFlops on a single dataflow device.
数据流架构上的无矩阵有限体积内核
快速准确的数值模拟对于设计大型地质碳封存项目至关重要,可确保作为减缓气候变化战略的二氧化碳长期安全封存。这些模拟需要求解大量复杂的线性系统,这些线性系统是通过对地下流体流动的 PDE 进行隐式有限体积(FV)离散化而产生的。再加上高度精细的地质模型,线性系统的求解在计算和内存方面都非常昂贵,并占据了模拟时间的大部分。现代内存层次结构不足以满足大规模数值模拟的延迟和带宽需求。因此,探索能够利用数据流和内存计算等替代和平衡范式的算法至关重要。这项工作介绍了一种无矩阵算法,利用数据流架构求解基于 FV 的线性系统,从而显著减少内存延迟和带宽瓶颈。与基于 GPGPU 的参考实现相比,我们的实现速度提高了两个数量级,在单个数据流设备上可达到 1.2 PFlops。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信