Employing Vector Field Techniques on the Analysis of Memristor Cellular Nonlinear Networks Cell Dynamics

Chandan Singh, Vasileios Ntinas, Dimitrios Prousalis, Yongmin Wang, Ahmet Samil Demirkol, Ioannis Messaris, Vikas Rana, Stephan Menzel, Alon Ascoli, Ronald Tetzlaff
{"title":"Employing Vector Field Techniques on the Analysis of Memristor Cellular Nonlinear Networks Cell Dynamics","authors":"Chandan Singh, Vasileios Ntinas, Dimitrios Prousalis, Yongmin Wang, Ahmet Samil Demirkol, Ioannis Messaris, Vikas Rana, Stephan Menzel, Alon Ascoli, Ronald Tetzlaff","doi":"arxiv-2408.03260","DOIUrl":null,"url":null,"abstract":"This paper introduces an innovative graphical analysis tool for investigating\nthe dynamics of Memristor Cellular Nonlinear Networks (M-CNNs) featuring\n2nd-order processing elements, known as M-CNN cells. In the era of specialized\nhardware catering to the demands of intelligent autonomous systems, the\nintegration of memristors within Cellular Nonlinear Networks (CNNs) has emerged\nas a promising paradigm due to their exceptional characteristics. However, the\nstandard Dynamic Route Map (DRM) analysis, applicable to 1st-order systems,\nfails to address the intricacies of 2nd-order M-CNN cell dynamics, as well the\n2nd-order DRM (DRM2) exhibits limitations on the graphical illustration of\nlocal dynamical properties of the M-CNN cells, e.g. state derivative's\nmagnitude. To address this limitation, we propose a novel integration of M-CNN\ncell vector field into the cell's phase portrait, enhancing the analysis\nefficacy and enabling efficient M-CNN cell design. A comprehensive exploration\nof M-CNN cell dynamics is presented, showcasing the utility of the proposed\ngraphical tool for various scenarios, including bistable and monostable\nbehavior, and demonstrating its superior ability to reveal subtle variations in\ncell behavior. Through this work, we offer a refined perspective on the\nanalysis and design of M-CNNs, paving the way for advanced applications in edge\ncomputing and specialized hardware.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an innovative graphical analysis tool for investigating the dynamics of Memristor Cellular Nonlinear Networks (M-CNNs) featuring 2nd-order processing elements, known as M-CNN cells. In the era of specialized hardware catering to the demands of intelligent autonomous systems, the integration of memristors within Cellular Nonlinear Networks (CNNs) has emerged as a promising paradigm due to their exceptional characteristics. However, the standard Dynamic Route Map (DRM) analysis, applicable to 1st-order systems, fails to address the intricacies of 2nd-order M-CNN cell dynamics, as well the 2nd-order DRM (DRM2) exhibits limitations on the graphical illustration of local dynamical properties of the M-CNN cells, e.g. state derivative's magnitude. To address this limitation, we propose a novel integration of M-CNN cell vector field into the cell's phase portrait, enhancing the analysis efficacy and enabling efficient M-CNN cell design. A comprehensive exploration of M-CNN cell dynamics is presented, showcasing the utility of the proposed graphical tool for various scenarios, including bistable and monostable behavior, and demonstrating its superior ability to reveal subtle variations in cell behavior. Through this work, we offer a refined perspective on the analysis and design of M-CNNs, paving the way for advanced applications in edge computing and specialized hardware.
利用矢量场技术分析晶状体细胞非线性网络的细胞动力学
本文介绍了一种创新的图形分析工具,用于研究具有二阶处理元件(称为M-CNN单元)的忆阻器蜂窝非线性网络(M-CNN)的动力学。在满足智能自主系统需求的专用硬件时代,由于忆阻器的优异特性,在蜂窝非线性网络(CNN)中集成忆阻器已成为一种前景广阔的范例。然而,适用于一阶系统的标准动态路由图(DRM)分析无法解决二阶 M-CNN 单元动态的复杂性,而且二阶 DRM(DRM2)在以图形说明 M-CNN 单元的局部动态特性(如状态导数的磁性)方面存在局限性。针对这一局限性,我们提出了一种将 M-CNN 单元矢量场整合到单元相位图中的新方法,从而提高了分析效率,实现了高效的 M-CNN 单元设计。我们介绍了对 M-CNN 单元动态的全面探索,展示了所提出的图形工具在各种情况下的实用性,包括双稳态和单稳态行为,并证明了其揭示单元行为微妙变化的卓越能力。通过这项工作,我们为 M-CNN 的分析和设计提供了一个完善的视角,为边缘计算和专用硬件的高级应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信