Slow-fast systems in infinite measure, with or without averaging

Maxence Phalempin
{"title":"Slow-fast systems in infinite measure, with or without averaging","authors":"Maxence Phalempin","doi":"arxiv-2408.03009","DOIUrl":null,"url":null,"abstract":"This paper studies the asymptotic behaviour of the solution of a differential\nequation perturbed by a fast flow preserving an infinite measure. This question\nis related with limit theorems for non-stationary Birkhoff integrals. We\ndistinguish two settings with different behaviour: the integrable setting (no\naveraging phenomenon) and the case of an additive \"centered\" perturbation term\n(averaging phenomenon). The paper is motivated by the case where the\nperturbation comes from the Z-periodic Lorentz gas flow or from the geodesic\nflow over a Z-cover of a negatively curved compact surface. We establish limit\ntheorems in more general contexts.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the asymptotic behaviour of the solution of a differential equation perturbed by a fast flow preserving an infinite measure. This question is related with limit theorems for non-stationary Birkhoff integrals. We distinguish two settings with different behaviour: the integrable setting (no averaging phenomenon) and the case of an additive "centered" perturbation term (averaging phenomenon). The paper is motivated by the case where the perturbation comes from the Z-periodic Lorentz gas flow or from the geodesic flow over a Z-cover of a negatively curved compact surface. We establish limit theorems in more general contexts.
有或没有平均值的无限慢-快系统
本文研究的是微分方程解在保持无限度量的快速流扰动下的渐近行为。这个问题与非稳态伯克霍夫积分的极限定理有关。我们区分了具有不同行为的两种情况:可积分情况(无平均现象)和有加法 "居中 "扰动项的情况(平均现象)。本文以扰动来自 Z 周期洛伦兹气体流或来自负弯曲紧凑曲面的 Z 覆盖面上的大地流的情况为出发点。我们建立了更一般情况下的极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信