Tangent Space of the Stable And Unstable Manifold of Anosov Diffeomorphism on 2-Torus

Federico Bonneto, Jack Wang, Vishal Kumar
{"title":"Tangent Space of the Stable And Unstable Manifold of Anosov Diffeomorphism on 2-Torus","authors":"Federico Bonneto, Jack Wang, Vishal Kumar","doi":"arxiv-2408.03607","DOIUrl":null,"url":null,"abstract":"In this paper we describe the tangent vectors of the stable and unstable\nmanifold of a class of Anosov diffeomorphisms on the torus $\\mathbb{T}^2$ using\nthe method of formal series and derivative trees. We start with linear\nautomorphism that is hyperbolic and whose eigenvectors are orthogonal. Then we\nstudy the perturbation of such maps by trigonometric polynomial. It is known\nthat there exist a (continuous) map $H$ which acts as a change of coordinate\nbetween the perturbed and unperturbed system, but such a map is in general, not\ndifferentiable. By \"re-scaling\" the parametrization $H$, we will be able to\nobtain the explicit formula for the tangent vectors of these maps.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we describe the tangent vectors of the stable and unstable manifold of a class of Anosov diffeomorphisms on the torus $\mathbb{T}^2$ using the method of formal series and derivative trees. We start with linear automorphism that is hyperbolic and whose eigenvectors are orthogonal. Then we study the perturbation of such maps by trigonometric polynomial. It is known that there exist a (continuous) map $H$ which acts as a change of coordinate between the perturbed and unperturbed system, but such a map is in general, not differentiable. By "re-scaling" the parametrization $H$, we will be able to obtain the explicit formula for the tangent vectors of these maps.
2-Torus 上阿诺索夫衍射的稳定与不稳定漫域的切线空间
在本文中,我们用形式数列和导数树的方法描述了环$\mathbb{T}^2$上一类阿诺索夫差分形的稳定和不稳定manifold的切向量。我们从双曲且特征向量正交的线性自形变开始。然后用三角多项式研究这种映射的扰动。众所周知,存在一个(连续的)映射 $H$,它在扰动系统和未扰动系统之间起着改变坐标的作用,但这种映射一般是不可分的。通过 "重新缩放 "参数 H$,我们将能得到这些映射的切向量的明确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信