On orbit complexity of dynamical systems: intermediate value property and level set related to a Furstenberg problem

Yuanyang Chang, Bing Li, Meng Wu
{"title":"On orbit complexity of dynamical systems: intermediate value property and level set related to a Furstenberg problem","authors":"Yuanyang Chang, Bing Li, Meng Wu","doi":"arxiv-2408.04010","DOIUrl":null,"url":null,"abstract":"For symbolic dynamics with some mild conditions, we solve the lowering\ntopological entropy problem for subsystems and determine the Hausdorff\ndimension of the level set with given complexity, where the complexity is\nrepresented by Hausdorff dimension of orbit closure. These results can be\napplied to some dynamical systems such as $\\beta$-transformations, conformal\nexpanding repeller, etc. We also determine the dimension of the Furstenberg\nlevel set, which is related to a problem of Furstenberg on the orbits under two\nmultiplicatively independent maps.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For symbolic dynamics with some mild conditions, we solve the lowering topological entropy problem for subsystems and determine the Hausdorff dimension of the level set with given complexity, where the complexity is represented by Hausdorff dimension of orbit closure. These results can be applied to some dynamical systems such as $\beta$-transformations, conformal expanding repeller, etc. We also determine the dimension of the Furstenberg level set, which is related to a problem of Furstenberg on the orbits under two multiplicatively independent maps.
论动力系统的轨道复杂性:与弗斯滕伯格问题有关的中间值特性和水平集
对于具有一些温和条件的符号动力学,我们求解了子系统的降低拓扑熵问题,并确定了具有给定复杂度的水平集的 Hausdorff 维度,其中复杂度用轨道闭合的 Hausdorff 维度表示。这些结果可以应用于一些动力学系统,如 $\beta$-变换、保形膨胀排斥器等。我们还确定了弗斯滕伯格水平集的维度,这与弗斯滕伯格关于两乘法独立映射下轨道的问题有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信