Ultra-thin strain-relieving Si$_{1-x}$Ge$_x$ layers enabling III-V epitaxy on Si

Trevor R. Smith, Spencer McDermott, Vatsalkumar Patel, Ross Anthony, Manu Hedge, Andrew P. Knights, Ryan B. Lewis
{"title":"Ultra-thin strain-relieving Si$_{1-x}$Ge$_x$ layers enabling III-V epitaxy on Si","authors":"Trevor R. Smith, Spencer McDermott, Vatsalkumar Patel, Ross Anthony, Manu Hedge, Andrew P. Knights, Ryan B. Lewis","doi":"arxiv-2408.03253","DOIUrl":null,"url":null,"abstract":"The explosion of artificial intelligence, possible end of Moore's law, dawn\nof quantum computing and continued exponential growth of data communications\ntraffic have brought new urgency to the need for laser integration on the\ndiversified Si platform. While diode lasers on III-V platforms have long\npowered internet data communications and other optoelectronic technologies,\ndirect integration with Si remains problematic. A paradigm-shifting solution\nrequires exploring new and unconventional materials and integration approaches.\nIn this work, we show that a sub-10-nm ultra-thin Si$_{1-x}$Ge$_x$ buffer layer\nfabricated by an oxidative solid-phase epitaxy process can facilitate\nextraordinarily efficient strain relaxation. The Si$_{1-x}$Ge$_x$ layer is\nformed by ion implanting Ge into Si(111) and selectively oxidizing Si atoms in\nthe resulting ion-damaged layer, precipitating a fully strain-relaxed Ge-rich\nlayer between the Si substrate and surface oxide. The efficient strain\nrelaxation results from the high oxidation temperature, producing a periodic\nnetwork of dislocations at the substrate interface, coinciding with modulations\nof the Ge content in the Si$_{1-x}$Ge$_x$ layer and indicating the presence of\ndefect-mediated diffusion of Si through the layer. The epitaxial growth of\nhigh-quality GaAs is demonstrated on this ultra-thin Si$_{1-x}$Ge$_x$ layer,\ndemonstrating a promising new pathway for integrating III-V lasers directly on\nthe Si platform.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The explosion of artificial intelligence, possible end of Moore's law, dawn of quantum computing and continued exponential growth of data communications traffic have brought new urgency to the need for laser integration on the diversified Si platform. While diode lasers on III-V platforms have long powered internet data communications and other optoelectronic technologies, direct integration with Si remains problematic. A paradigm-shifting solution requires exploring new and unconventional materials and integration approaches. In this work, we show that a sub-10-nm ultra-thin Si$_{1-x}$Ge$_x$ buffer layer fabricated by an oxidative solid-phase epitaxy process can facilitate extraordinarily efficient strain relaxation. The Si$_{1-x}$Ge$_x$ layer is formed by ion implanting Ge into Si(111) and selectively oxidizing Si atoms in the resulting ion-damaged layer, precipitating a fully strain-relaxed Ge-rich layer between the Si substrate and surface oxide. The efficient strain relaxation results from the high oxidation temperature, producing a periodic network of dislocations at the substrate interface, coinciding with modulations of the Ge content in the Si$_{1-x}$Ge$_x$ layer and indicating the presence of defect-mediated diffusion of Si through the layer. The epitaxial growth of high-quality GaAs is demonstrated on this ultra-thin Si$_{1-x}$Ge$_x$ layer, demonstrating a promising new pathway for integrating III-V lasers directly on the Si platform.
超薄应变释放 Si$_{1-x}$Ge$_x$ 层在硅上实现 III-V 外延
人工智能的爆炸式发展、摩尔定律的可能终结、量子计算的到来以及数据通信流量的持续指数级增长,都为在多元化硅平台上集成激光器带来了新的紧迫性。虽然 III-V 平台上的二极管激光器长期以来一直为互联网数据通信和其他光电技术提供动力,但与硅的直接集成仍然存在问题。在这项工作中,我们展示了通过氧化固相外延工艺制造的亚 10 纳米超薄 Si$_{1-x}$Ge$_x$ 缓冲层能够促进超高效率的应变松弛。Si$_{1-x}$Ge$_x$ 层是通过将 Ge 离子植入到 Si(111) 中,并选择性地氧化离子破坏层中的硅原子,从而在硅衬底和表面氧化物之间析出一层完全应变松弛的 Ge-richlayer 而形成的。高效的应变松弛源于氧化温度过高,在衬底界面上产生了周期性的位错网络,与 Si$_{1-x}$Ge$_x$ 层中 Ge 含量的变化相吻合,表明硅在该层中存在以缺陷为媒介的扩散。在这一超薄 Si$_{1-x}$Ge$_x$ 层上实现了高质量砷化镓的外延生长,为在硅平台上直接集成 III-V 激光器开辟了一条前景广阔的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信