Sharp Coefficient Results on the Inverse of Silverman Starlike Functions

Pub Date : 2024-08-09 DOI:10.3103/s1068362324700213
L. Shi, M. Arif
{"title":"Sharp Coefficient Results on the Inverse of Silverman Starlike Functions","authors":"L. Shi, M. Arif","doi":"10.3103/s1068362324700213","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In the present paper, we consider a subclass of starlike functions <span>\\(\\mathcal{G}_{\\mu}\\)</span> introduced by Silverman. It is defined by the ratio of analytic representations of convex and starlike functions. The main aim is to determine the sharp bounds of coefficient problems for the inverse of functions in this class. We derive the upper bounds of some initial coefficients, the Fekete–Szegö type inequality and the second Hankel determinant <span>\\(\\mathcal{H}_{2,2}\\left(f^{-1}\\right)\\)</span> for <span>\\(f\\in\\mathcal{G}_{\\mu}\\)</span>. On the third Hankel determinant <span>\\(\\mathcal{H}_{3,1}\\left(f^{-1}\\right)\\)</span>, we give a bound on the inverse of <span>\\(f\\in\\mathcal{G}\\)</span>. All the results are proved to be sharp.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324700213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we consider a subclass of starlike functions \(\mathcal{G}_{\mu}\) introduced by Silverman. It is defined by the ratio of analytic representations of convex and starlike functions. The main aim is to determine the sharp bounds of coefficient problems for the inverse of functions in this class. We derive the upper bounds of some initial coefficients, the Fekete–Szegö type inequality and the second Hankel determinant \(\mathcal{H}_{2,2}\left(f^{-1}\right)\) for \(f\in\mathcal{G}_{\mu}\). On the third Hankel determinant \(\mathcal{H}_{3,1}\left(f^{-1}\right)\), we give a bound on the inverse of \(f\in\mathcal{G}\). All the results are proved to be sharp.

分享
查看原文
西尔弗曼星状函数逆的锐系数结果
摘要 在本文中,我们考虑了西尔弗曼引入的星状函数的一个子类 \(\mathcal{G}_{\mu}\)。它是由凸函数和星状函数的解析表示之比定义的。主要目的是确定该类函数逆的系数问题的尖锐边界。我们推导出了\(f\in\mathcal{G}_\{mu}\)的一些初始系数的上限、费克特-塞戈(Fekete-Szegö)型不等式和第二个汉克尔行列式(\mathcal{H}_{2,2}left(f^{-1}\right)\)。关于第三个汉克尔行列式((\mathcal{H}_{3,1}\left(f^{-1}\right)),我们给出了\(fin\mathcal{G}\)的逆的约束。所有结果都被证明是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信