Identification of the parameters of complex constitutive models: Least squares minimization vs. Bayesian updating

Thomas Most
{"title":"Identification of the parameters of complex constitutive models: Least squares minimization vs. Bayesian updating","authors":"Thomas Most","doi":"arxiv-2408.04928","DOIUrl":null,"url":null,"abstract":"In this study the common least-squares minimization approach is compared to\nthe Bayesian updating procedure. In the content of material parameter\nidentification the posterior parameter density function is obtained from its\nprior and the likelihood function of the measurements. By using Markov Chain\nMonte Carlo methods, such as the Metropolis-Hastings algorithm\n\\cite{Hastings1970}, the global density function including local peaks can be\ncomputed. Thus this procedure enables an accurate evaluation of the global\nparameter quality. However, the computational effort is remarkable larger\ncompared to the minimization approach. Thus several methodologies for an\nefficient approximation of the likelihood function are discussed in the present\nstudy.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study the common least-squares minimization approach is compared to the Bayesian updating procedure. In the content of material parameter identification the posterior parameter density function is obtained from its prior and the likelihood function of the measurements. By using Markov Chain Monte Carlo methods, such as the Metropolis-Hastings algorithm \cite{Hastings1970}, the global density function including local peaks can be computed. Thus this procedure enables an accurate evaluation of the global parameter quality. However, the computational effort is remarkable larger compared to the minimization approach. Thus several methodologies for an efficient approximation of the likelihood function are discussed in the present study.
复杂结构模型参数的识别:最小二乘最小化与贝叶斯更新
本研究将普通最小二乘最小化方法与贝叶斯更新程序进行了比较。在材料参数识别的内容中,后验参数密度函数是由前验参数密度函数和测量值的似然函数得到的。通过使用马尔可夫链蒙特卡洛方法(如 Metropolis-Hastings 算法),可以计算出包括局部峰值在内的全局密度函数。因此,这种方法可以准确评估全局参数的质量。然而,与最小化方法相比,计算量要大得多。因此,本研究讨论了几种有效逼近似然函数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信