Superacidity in Zr(iv)/Ce(iii) MOF-808: unlocking biodiesel production from microalgae lipids at reduced temperatures†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Lei Qian , Jun Cheng , Kai Xin , Yuxiang Mao , Jiacan Tu , Weijuan Yang
{"title":"Superacidity in Zr(iv)/Ce(iii) MOF-808: unlocking biodiesel production from microalgae lipids at reduced temperatures†","authors":"Lei Qian ,&nbsp;Jun Cheng ,&nbsp;Kai Xin ,&nbsp;Yuxiang Mao ,&nbsp;Jiacan Tu ,&nbsp;Weijuan Yang","doi":"10.1039/d4cy00545g","DOIUrl":null,"url":null,"abstract":"<div><div>To manage production costs and lower the conversion temperature of microalgal lipids, this study engineered superacid sites in MOF-808, facilitating lipid transformation at markedly reduced temperatures. Through simple substitution and activation steps, secondary building units formed by Zr(<span>iv</span>) and Ce(<span>iii</span>) were assembled with benzene-1,3,5-tricarboxylate ligands, resulting in a unique superacid structure. This superacid structure has a Hammett acidity value of less than −14.5 and a deprotonation energy of 1016.25 kJ mol<sup>−1</sup>, both lower than those of sulfuric acid. Density functional theory and solid-state NMR analyses confirmed the superacidity arises from a weakly constrained superacid proton within a bridging structure, formed by two methanol molecules attracted to adjacent Ce and Zr atoms. Variable temperature infrared spectroscopy demonstrated the low-temperature activation of methanol, with the optimal reaction temperature reduced from 200 °C to 150 °C and pressure reduced by 2952 kPa. Unlike traditional solid superacids, this methanol-based superacid configuration prevents the loss of superacid sites, maintaining over 97% efficiency after five cycles.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 18","pages":"Pages 5278-5290"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324004374","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To manage production costs and lower the conversion temperature of microalgal lipids, this study engineered superacid sites in MOF-808, facilitating lipid transformation at markedly reduced temperatures. Through simple substitution and activation steps, secondary building units formed by Zr(iv) and Ce(iii) were assembled with benzene-1,3,5-tricarboxylate ligands, resulting in a unique superacid structure. This superacid structure has a Hammett acidity value of less than −14.5 and a deprotonation energy of 1016.25 kJ mol−1, both lower than those of sulfuric acid. Density functional theory and solid-state NMR analyses confirmed the superacidity arises from a weakly constrained superacid proton within a bridging structure, formed by two methanol molecules attracted to adjacent Ce and Zr atoms. Variable temperature infrared spectroscopy demonstrated the low-temperature activation of methanol, with the optimal reaction temperature reduced from 200 °C to 150 °C and pressure reduced by 2952 kPa. Unlike traditional solid superacids, this methanol-based superacid configuration prevents the loss of superacid sites, maintaining over 97% efficiency after five cycles.

Abstract Image

Abstract Image

Zr(IV)/Ce(III)MOF-808中的超酸性:利用微藻脂类在低温下生产生物柴油
为了控制生产成本并降低微藻脂质的转化温度,本研究在 MOF-808 中设计了超酸性位点,从而在明显降低温度的条件下促进脂质转化。通过简单的置换和活化步骤,Zr(IV) 和 Ce(III) 形成的二级构建单元与苯-1,3,5-三羧酸配体组装在一起,形成了独特的超酸性结构。这种超酸结构的哈米特酸度值小于-14.5,去质子化能为 1016.25 kJ mol-1,均低于硫酸。密度泛函理论和固态核磁共振分析证实,超酸性来自桥接结构中的一个弱约束超酸质子,该结构由两个甲醇分子吸引到相邻的 Ce 原子和 Zr 原子上形成。变温红外光谱显示了甲醇的低温活化,最佳反应温度从 200 °C 降至 150 °C,压力降低了 2952 kPa。与传统的固体超酸不同,这种基于甲醇的超酸构型可防止超酸位点的损失,在五个循环后仍能保持 97% 以上的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信