Klein Tunneling of Gigahertz Elastic Waves in Nanoelectromechanical Metamaterials

Daehun Lee, Yue Jiang, Xiaoru Zhang, Shahin Jahanbani, Chengyu Wen, Qicheng Zhang, A. T. Charlie Johnson, Keji Lai
{"title":"Klein Tunneling of Gigahertz Elastic Waves in Nanoelectromechanical Metamaterials","authors":"Daehun Lee, Yue Jiang, Xiaoru Zhang, Shahin Jahanbani, Chengyu Wen, Qicheng Zhang, A. T. Charlie Johnson, Keji Lai","doi":"arxiv-2408.04473","DOIUrl":null,"url":null,"abstract":"Klein tunneling, the perfect transmission of a normally incident relativistic\nparticle through an energy barrier, has been tested in various electronic,\nphotonic, and phononic systems. Its potential in guiding and filtering\nclassical waves in the Ultra High Frequency regime, on the other hand, has not\nbeen explored. Here, we report the realization of acoustic Klein tunneling in a\nnanoelectromechanical metamaterial system operating at gigahertz frequencies.\nThe piezoelectric potential profiles are obtained by transmission-mode\nmicrowave impedance microscopy, from which reciprocal-space maps can be\nextracted. The transmission rate of normally incident elastic waves is near\nunity in the Klein tunneling regime and drops significantly outside this\nfrequency range, consistent with microwave network analysis. Strong angular\ndependent transmission is also observed by controlling the launching angle of\nthe emitter interdigital transducer. This work broadens the horizon in\nexploiting high-energy-physics phenomena for practical circuit applications in\nboth classical and quantum regimes.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Klein tunneling, the perfect transmission of a normally incident relativistic particle through an energy barrier, has been tested in various electronic, photonic, and phononic systems. Its potential in guiding and filtering classical waves in the Ultra High Frequency regime, on the other hand, has not been explored. Here, we report the realization of acoustic Klein tunneling in a nanoelectromechanical metamaterial system operating at gigahertz frequencies. The piezoelectric potential profiles are obtained by transmission-mode microwave impedance microscopy, from which reciprocal-space maps can be extracted. The transmission rate of normally incident elastic waves is near unity in the Klein tunneling regime and drops significantly outside this frequency range, consistent with microwave network analysis. Strong angular dependent transmission is also observed by controlling the launching angle of the emitter interdigital transducer. This work broadens the horizon in exploiting high-energy-physics phenomena for practical circuit applications in both classical and quantum regimes.
千兆赫弹性波在纳米机电超材料中的克莱因隧道效应
克莱因隧道效应是指正常入射的相对论粒子通过能障的完美传输,已在各种电子、光子和声子系统中进行过测试。另一方面,它在超高频制导和过滤经典波方面的潜力尚未得到探索。在这里,我们报告了在工作频率为千兆赫兹的机电超材料系统中实现声克莱因隧道的情况。压电势剖面是通过透射模态emicrowave 阻抗显微镜获得的,从中可以提取倒易空间图。正常入射弹性波的传输速率在克莱因隧道机制中接近统一,而在此频率范围之外则显著下降,这与微波网络分析一致。通过控制发射器间数字换能器的发射角,还观察到了与角度相关的强传输。这项工作拓宽了高能物理现象在经典和量子态实际电路应用中的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信