Exotic Kondo effect in two one dimensional spin 1/2 chains coupled to two localized spin 1/2 magnets

Igor Kuzmenko, Tetyana Kuzmenko, Y. B. Band, Yshai Avishai
{"title":"Exotic Kondo effect in two one dimensional spin 1/2 chains coupled to two localized spin 1/2 magnets","authors":"Igor Kuzmenko, Tetyana Kuzmenko, Y. B. Band, Yshai Avishai","doi":"arxiv-2408.04353","DOIUrl":null,"url":null,"abstract":"We study an exotic Kondo effect in a system consisting of two one-dimensional\nXX Heisenberg ferromagnetic spin $1/2$ chains (denoted by $\\alpha = u, d$ for\nup and down chains) coupled to a quantum dot consisting of two localized spin\n$1/2$ magnets. Using the Jordan-Wigner transformation on the Heisenberg\nHamiltonian of the two chains, this system can be expressed in terms of\nnon-interacting spinless fermionic quasiparticles. As a result, the Hamiltonian\nof the whole system is expressed as an Anderson model for spin 1/2 fermions\ninteracting with a spin-1/2 impurity. Thus, we study the scattering of\nfermionic quasiparticles (propagating along spin chains) by a pair of localized\nmagnetic impurities. At low temperature, the localized spin $1/2$ magnets are\nshielded by the chain `spins' via the Kondo effect. We calculate the Kondo\ntemperature $T_K$ and derive the temperature dependence of the entropy, the\nspecific heat, the specific heat and the `magnetic susceptibility' of the dot\nfor $T \\gg T_K$. Our results can be generalized to the case of\nanti-ferromagnetic XX chains.","PeriodicalId":501171,"journal":{"name":"arXiv - PHYS - Strongly Correlated Electrons","volume":"371 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study an exotic Kondo effect in a system consisting of two one-dimensional XX Heisenberg ferromagnetic spin $1/2$ chains (denoted by $\alpha = u, d$ for up and down chains) coupled to a quantum dot consisting of two localized spin $1/2$ magnets. Using the Jordan-Wigner transformation on the Heisenberg Hamiltonian of the two chains, this system can be expressed in terms of non-interacting spinless fermionic quasiparticles. As a result, the Hamiltonian of the whole system is expressed as an Anderson model for spin 1/2 fermions interacting with a spin-1/2 impurity. Thus, we study the scattering of fermionic quasiparticles (propagating along spin chains) by a pair of localized magnetic impurities. At low temperature, the localized spin $1/2$ magnets are shielded by the chain `spins' via the Kondo effect. We calculate the Kondo temperature $T_K$ and derive the temperature dependence of the entropy, the specific heat, the specific heat and the `magnetic susceptibility' of the dot for $T \gg T_K$. Our results can be generalized to the case of anti-ferromagnetic XX chains.
与两个局部自旋 1/2 磁体耦合的两个一维自旋 1/2 链中的奇异近藤效应
我们研究了由两个一维XX海森堡铁磁自旋1/2$链(用$\alpha = u, d$表示上下链)耦合到一个由两个局部自旋1/2$磁体组成的量子点的系统中的奇异近藤效应。利用两个链的海森堡哈密顿的乔丹-维格纳变换,这个系统可以用不相互作用的无自旋费米子准粒子来表示。因此,整个系统的哈密顿数可以表示为自旋 1/2 费米子与自旋-1/2 杂质相互作用的安德森模型。因此,我们研究了一对局部磁性杂质对自旋准粒子(沿自旋链传播)的散射。在低温下,局部自旋 1/2$ 磁体通过近藤效应被自旋链 "自旋 "屏蔽。我们计算了 Kondotemperature $T_K$,并推导出了点的熵、比热、比热和 "磁感应强度 "对 $T \gg T_K$ 的温度依赖性。我们的结果可以推广到反铁磁 XX 链的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信