The LATIN-PGD methodology to nonlinear dynamics and quasi-brittle materials for future earthquake engineering applications

Sebastian Rodriguez, Pierre-Etienne Charbonnel, Pierre Ladevèze, David Néron
{"title":"The LATIN-PGD methodology to nonlinear dynamics and quasi-brittle materials for future earthquake engineering applications","authors":"Sebastian Rodriguez, Pierre-Etienne Charbonnel, Pierre Ladevèze, David Néron","doi":"arxiv-2408.05108","DOIUrl":null,"url":null,"abstract":"This paper presents a first implementation of the LArge Time INcrement\n(LATIN) method along with the model reduction technique called Proper\nGeneralized Decomposition (PGD) for solving nonlinear low-frequency dynamics\nproblems when dealing with a quasi-brittle isotropic damage constitutive\nrelations. The present paper uses the Time-Discontinuous Galerkin Method (TDGM)\nfor computing the temporal contributions of the space-time separate-variables\nsolution of the LATIN-PGD approach, which offers several advantages when\nconsidering a high number of DOFs in time. The efficiency of the method is\ntested for the case of a 3D bending beam, where results and benchmarks\ncomparing LATIN-PGD to classical time-incremental Newmark/Quasi-Newton\nnonlinear solver are presented. This work represents a first step towards\ntaking into account uncertainties and carrying out more complex parametric\nstudies imposed by seismic risk assessment.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a first implementation of the LArge Time INcrement (LATIN) method along with the model reduction technique called Proper Generalized Decomposition (PGD) for solving nonlinear low-frequency dynamics problems when dealing with a quasi-brittle isotropic damage constitutive relations. The present paper uses the Time-Discontinuous Galerkin Method (TDGM) for computing the temporal contributions of the space-time separate-variables solution of the LATIN-PGD approach, which offers several advantages when considering a high number of DOFs in time. The efficiency of the method is tested for the case of a 3D bending beam, where results and benchmarks comparing LATIN-PGD to classical time-incremental Newmark/Quasi-Newton nonlinear solver are presented. This work represents a first step towards taking into account uncertainties and carrying out more complex parametric studies imposed by seismic risk assessment.
针对非线性动力学和准脆性材料的 LATIN-PGD 方法在未来地震工程中的应用
本文首次提出了LArge Time INcrement (LATIN)方法与称为ProperGeneralized Decomposition (PGD)的模型缩减技术,用于求解准脆性各向同性损伤构成参数时的非线性低频动力学问题。本文使用时间-非连续伽勒金方法(TDGM)计算 LATIN-PGD 方法的时空分离无变量求解的时间贡献。以三维弯曲梁为例,测试了该方法的效率,并给出了将 LATIN-PGD 与经典的时间递增纽马克/准牛顿非线性求解器进行比较的结果和基准。这项工作是考虑不确定性和开展地震风险评估所要求的更复杂参数研究的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信