{"title":"ProcGCN: detecting malicious process in memory based on DGCNN","authors":"Heyu Zhang, Binglong Li, Shilong Yu, Chaowen Chang, Jinhui Li, Bohao Yang","doi":"10.7717/peerj-cs.2193","DOIUrl":null,"url":null,"abstract":"The combination of memory forensics and deep learning for malware detection has achieved certain progress, but most existing methods convert process dump to images for classification, which is still based on process byte feature classification. After the malware is loaded into memory, the original byte features will change. Compared with byte features, function call features can represent the behaviors of malware more robustly. Therefore, this article proposes the ProcGCN model, a deep learning model based on DGCNN (Deep Graph Convolutional Neural Network), to detect malicious processes in memory images. First, the process dump is extracted from the whole system memory image; then, the Function Call Graph (FCG) of the process is extracted, and feature vectors for the function node in the FCG are generated based on the word bag model; finally, the FCG is input to the ProcGCN model for classification and detection. Using a public dataset for experiments, the ProcGCN model achieved an accuracy of 98.44% and an F1 score of 0.9828. It shows a better result than the existing deep learning methods based on static features, and its detection speed is faster, which demonstrates the effectiveness of the method based on function call features and graph representation learning in memory forensics.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2193","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The combination of memory forensics and deep learning for malware detection has achieved certain progress, but most existing methods convert process dump to images for classification, which is still based on process byte feature classification. After the malware is loaded into memory, the original byte features will change. Compared with byte features, function call features can represent the behaviors of malware more robustly. Therefore, this article proposes the ProcGCN model, a deep learning model based on DGCNN (Deep Graph Convolutional Neural Network), to detect malicious processes in memory images. First, the process dump is extracted from the whole system memory image; then, the Function Call Graph (FCG) of the process is extracted, and feature vectors for the function node in the FCG are generated based on the word bag model; finally, the FCG is input to the ProcGCN model for classification and detection. Using a public dataset for experiments, the ProcGCN model achieved an accuracy of 98.44% and an F1 score of 0.9828. It shows a better result than the existing deep learning methods based on static features, and its detection speed is faster, which demonstrates the effectiveness of the method based on function call features and graph representation learning in memory forensics.