{"title":"Approximate derivation of the power law for the mean streamwise velocity in a turbulent boundary layer under zero-pressure gradient","authors":"J. Dey","doi":"10.1103/physrevfluids.9.084601","DOIUrl":null,"url":null,"abstract":"Distribution of the mean streamwise velocity in a turbulent boundary layer over a flat plate can be represented by the equation <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>U</mi><mo>∼</mo><msup><mi>η</mi><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></msup></mrow></math>, as was widely used in the past; <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>η</mi></math> are the normalized velocity and the wall-normal distance, respectively. However, this <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow><mi mathvariant=\"normal\">th</mi></math>-power law is an empirical one. By incorporating either the Reynolds shear stress model of Wei <i>et al.</i> [<span>J. Fluid Mech.</span> <b>969</b>, A3 (2023)], which is in terms of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math> and the (normalized) wall-normal velocity (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math>), or a similar one in the boundary layer equations, it is found that <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math> are related as <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mi>U</mi><mrow><mo>(</mo><mi>H</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>∼</mo><mspace width=\"4pt\"></mspace><msup><mi>V</mi><mrow><mo>(</mo><mi>H</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></math> in the outer region of a flat plate boundary layer; <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>H</mi></mrow></math> is the flow shape parameter. Along with the distribution of the wall-normal velocity (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>V</mi><mi>w</mi></msub></math>) of Wei <i>et al.</i>, the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow><mi mathvariant=\"normal\">th</mi></math>-power law for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math> is obtained by equating the derivative (with respect to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>η</mi></math>) of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math> with that of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>V</mi><mi>w</mi></msub></math>. Thus, this empirical power law seems to have a reasonable theoretical basis embedded in it.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"22 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.084601","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Distribution of the mean streamwise velocity in a turbulent boundary layer over a flat plate can be represented by the equation , as was widely used in the past; and are the normalized velocity and the wall-normal distance, respectively. However, this -power law is an empirical one. By incorporating either the Reynolds shear stress model of Wei et al. [J. Fluid Mech.969, A3 (2023)], which is in terms of and the (normalized) wall-normal velocity (), or a similar one in the boundary layer equations, it is found that and are related as in the outer region of a flat plate boundary layer; is the flow shape parameter. Along with the distribution of the wall-normal velocity () of Wei et al., the -power law for is obtained by equating the derivative (with respect to ) of with that of . Thus, this empirical power law seems to have a reasonable theoretical basis embedded in it.
期刊介绍:
Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.