High probability bounds on AdaGrad for constrained weakly convex optimization

IF 1.8 2区 数学 Q1 MATHEMATICS
Yusu Hong , Junhong Lin
{"title":"High probability bounds on AdaGrad for constrained weakly convex optimization","authors":"Yusu Hong ,&nbsp;Junhong Lin","doi":"10.1016/j.jco.2024.101889","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the high probability convergence of AdaGrad-Norm for constrained, non-smooth, weakly convex optimization with bounded noise and sub-Gaussian noise cases. We also investigate a more general accelerated gradient descent (AGD) template (Ghadimi and Lan, 2016) encompassing the AdaGrad-Norm, the Nesterov's accelerated gradient descent, and the RSAG (Ghadimi and Lan, 2016) with different parameter choices. We provide a high probability convergence rate <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mn>1</mn><mo>/</mo><msqrt><mrow><mi>T</mi></mrow></msqrt><mo>)</mo></math></span> without knowing the information of the weak convexity parameter and the gradient bound to tune the step-sizes.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000669/pdfft?md5=7c5c4999e38fd8c865761fe3213f35cf&pid=1-s2.0-S0885064X24000669-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000669","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the high probability convergence of AdaGrad-Norm for constrained, non-smooth, weakly convex optimization with bounded noise and sub-Gaussian noise cases. We also investigate a more general accelerated gradient descent (AGD) template (Ghadimi and Lan, 2016) encompassing the AdaGrad-Norm, the Nesterov's accelerated gradient descent, and the RSAG (Ghadimi and Lan, 2016) with different parameter choices. We provide a high probability convergence rate O˜(1/T) without knowing the information of the weak convexity parameter and the gradient bound to tune the step-sizes.

受约束弱凸优化的 AdaGrad 高概率边界
在本文中,我们研究了 AdaGrad-Norm 对于有约束噪声和亚高斯噪声情况下的约束、非光滑、弱凸优化的高概率收敛性。我们还研究了一种更通用的加速梯度下降(AGD)模板(Ghadimi 和 Lan,2016 年),其中包含 AdaGrad-Norm、Nesterov 加速梯度下降和 RSAG(Ghadimi 和 Lan,2016 年),并有不同的参数选择。我们在不知道弱凸性参数和梯度约束信息的情况下提供了高概率收敛率,以调整步长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信