On the approximation of vector-valued functions by volume sampling

IF 1.8 2区 数学 Q1 MATHEMATICS
Daniel Kressner , Tingting Ni , André Uschmajew
{"title":"On the approximation of vector-valued functions by volume sampling","authors":"Daniel Kressner ,&nbsp;Tingting Ni ,&nbsp;André Uschmajew","doi":"10.1016/j.jco.2024.101887","DOIUrl":null,"url":null,"abstract":"<div><p>Given a Hilbert space <span><math><mi>H</mi></math></span> and a finite measure space Ω, the approximation of a vector-valued function <span><math><mi>f</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><mi>H</mi></math></span> by a <em>k</em>-dimensional subspace <span><math><mi>U</mi><mo>⊂</mo><mi>H</mi></math></span> plays an important role in dimension reduction techniques, such as reduced basis methods for solving parameter-dependent partial differential equations. For functions in the Lebesgue–Bochner space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>;</mo><mi>H</mi><mo>)</mo></math></span>, the best possible subspace approximation error <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msubsup></math></span> is characterized by the singular values of <em>f</em>. However, for practical reasons, <span><math><mi>U</mi></math></span> is often restricted to be spanned by point samples of <em>f</em>. We show that this restriction only has a mild impact on the attainable error; there always exist <em>k</em> samples such that the resulting error is not larger than <span><math><msqrt><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msqrt><mo>⋅</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msubsup></math></span>. Our work extends existing results by Binev et al. (2011) <span><span>[3]</span></span> on approximation in supremum norm and by Deshpande et al. (2006) <span><span>[8]</span></span> on column subset selection for matrices.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"86 ","pages":"Article 101887"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000645/pdfft?md5=810287a810b23405b1bc8161d82ba70e&pid=1-s2.0-S0885064X24000645-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000645","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a Hilbert space H and a finite measure space Ω, the approximation of a vector-valued function f:ΩH by a k-dimensional subspace UH plays an important role in dimension reduction techniques, such as reduced basis methods for solving parameter-dependent partial differential equations. For functions in the Lebesgue–Bochner space L2(Ω;H), the best possible subspace approximation error dk(2) is characterized by the singular values of f. However, for practical reasons, U is often restricted to be spanned by point samples of f. We show that this restriction only has a mild impact on the attainable error; there always exist k samples such that the resulting error is not larger than k+1dk(2). Our work extends existing results by Binev et al. (2011) [3] on approximation in supremum norm and by Deshpande et al. (2006) [8] on column subset selection for matrices.

关于用体积采样法逼近矢量值函数
给定一个希尔伯特空间和一个有限度量空间 Ω,用一个 - 维子空间来逼近一个矢量值函数,在降维技术中扮演着重要角色,例如用于求解参数相关偏微分方程的降维基方法。对于 Lebesgue-Bochner 空间中的函数,最佳子空间近似误差的特征是.的奇异值。 然而,由于实际原因,.的奇异值通常被限制为.的点样本所跨。 我们的研究表明,这一限制对可达到的误差只有轻微的影响;总是存在这样的样本,即所产生的误差不大于.。 我们的研究扩展了 Binev 等人(2011 年)关于上规范近似和 Deshpande 等人(2006 年)关于矩阵列子集选择的现有结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信