{"title":"Rotationally symmetric gradient Yamabe solitons","authors":"Antonio W. Cunha, Rong Mi","doi":"10.1007/s00013-024-02032-7","DOIUrl":null,"url":null,"abstract":"<div><p>This short note deals with compact and complete and non-compact gradient Yamabe solitons (<i>M</i>, <i>g</i>, <i>f</i>) such that it has metric of constant scalar curvature. Firstly, we give a new proof of triviality for gradient compact Yamabe solitons. Also, under some integral conditions, we are able to improve a result due to Ma and Miquel (Ann Global Anal Geom 42:195–205, 2012). Finally, we obtain that the Yamabe metric becomes rotationally symmetric. Results for <i>k</i>-Yamabe solitons are also obtained here.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 4","pages":"447 - 453"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02032-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This short note deals with compact and complete and non-compact gradient Yamabe solitons (M, g, f) such that it has metric of constant scalar curvature. Firstly, we give a new proof of triviality for gradient compact Yamabe solitons. Also, under some integral conditions, we are able to improve a result due to Ma and Miquel (Ann Global Anal Geom 42:195–205, 2012). Finally, we obtain that the Yamabe metric becomes rotationally symmetric. Results for k-Yamabe solitons are also obtained here.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.