Controlling moving interfaces in solid state batteries

Salem Mosleh, Emil Annevelink, Venkatasubramanian Viswanathan, L. Mahadevan
{"title":"Controlling moving interfaces in solid state batteries","authors":"Salem Mosleh, Emil Annevelink, Venkatasubramanian Viswanathan, L. Mahadevan","doi":"arxiv-2408.03175","DOIUrl":null,"url":null,"abstract":"Safe, all-solid-state lithium metal batteries enable high energy density\napplications, but suffer from instabilities during operation that lead to rough\ninterfaces between the metal and electrolyte and subsequently cause void\nformation and dendrite growth that degrades performance and safety. Inspired by\nthe morphogenetic control of thin lamina such as tree leaves that robustly grow\ninto flat shapes -- we propose a range of approaches to control lithium metal\nstripping and plating. To guide discovery of materials that will implement\nthese feedback mechanisms, we develop a reduced order model that captures\ncouplings between mechanics, interface growth, temperature, and electrochemical\nvariables. We find that long-range feedback is required to achieve true\ninterface stability, while approaches based on local feedback always eventually\ngrow into rough interfaces. All together, our study provides the beginning of a\npractical framework for analyzing and designing stable electrochemical\ninterfaces in terms of the mechanical properties and the physical chemistry\nthat underlie their dynamics.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Safe, all-solid-state lithium metal batteries enable high energy density applications, but suffer from instabilities during operation that lead to rough interfaces between the metal and electrolyte and subsequently cause void formation and dendrite growth that degrades performance and safety. Inspired by the morphogenetic control of thin lamina such as tree leaves that robustly grow into flat shapes -- we propose a range of approaches to control lithium metal stripping and plating. To guide discovery of materials that will implement these feedback mechanisms, we develop a reduced order model that captures couplings between mechanics, interface growth, temperature, and electrochemical variables. We find that long-range feedback is required to achieve true interface stability, while approaches based on local feedback always eventually grow into rough interfaces. All together, our study provides the beginning of a practical framework for analyzing and designing stable electrochemical interfaces in terms of the mechanical properties and the physical chemistry that underlie their dynamics.
控制固态电池中的移动界面
安全的全固态锂金属电池可实现高能量密度应用,但在运行过程中存在不稳定性,导致金属与电解液之间的界面粗糙,进而造成空洞形成和枝晶生长,降低性能和安全性。受薄薄片形态发生控制的启发,如树叶能稳健地生长成扁平形状,我们提出了一系列控制锂金属剥离和电镀的方法。为了指导发现能够实现这些反馈机制的材料,我们建立了一个低阶模型,以捕捉力学、界面生长、温度和电化学变量之间的耦合。我们发现,要实现真正的界面稳定性,需要长程反馈,而基于局部反馈的方法最终总会形成粗糙的界面。总之,我们的研究为从机械特性和物理化学角度分析和设计稳定的电化学界面提供了一个实用框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信