Advancing Molecular Machine (Learned) Representations with Stereoelectronics-Infused Molecular Graphs

Daniil A. Boiko, Thiago Reschützegger, Benjamin Sanchez-Lengeling, Samuel M. Blau, Gabe Gomes
{"title":"Advancing Molecular Machine (Learned) Representations with Stereoelectronics-Infused Molecular Graphs","authors":"Daniil A. Boiko, Thiago Reschützegger, Benjamin Sanchez-Lengeling, Samuel M. Blau, Gabe Gomes","doi":"arxiv-2408.04520","DOIUrl":null,"url":null,"abstract":"Molecular representation is a foundational element in our understanding of\nthe physical world. Its importance ranges from the fundamentals of chemical\nreactions to the design of new therapies and materials. Previous molecular\nmachine learning models have employed strings, fingerprints, global features,\nand simple molecular graphs that are inherently information-sparse\nrepresentations. However, as the complexity of prediction tasks increases, the\nmolecular representation needs to encode higher fidelity information. This work\nintroduces a novel approach to infusing quantum-chemical-rich information into\nmolecular graphs via stereoelectronic effects. We show that the explicit\naddition of stereoelectronic interactions significantly improves the\nperformance of molecular machine learning models. Furthermore,\nstereoelectronics-infused representations can be learned and deployed with a\ntailored double graph neural network workflow, enabling its application to any\ndownstream molecular machine learning task. Finally, we show that the learned\nrepresentations allow for facile stereoelectronic evaluation of previously\nintractable systems, such as entire proteins, opening new avenues of molecular\ndesign.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular representation is a foundational element in our understanding of the physical world. Its importance ranges from the fundamentals of chemical reactions to the design of new therapies and materials. Previous molecular machine learning models have employed strings, fingerprints, global features, and simple molecular graphs that are inherently information-sparse representations. However, as the complexity of prediction tasks increases, the molecular representation needs to encode higher fidelity information. This work introduces a novel approach to infusing quantum-chemical-rich information into molecular graphs via stereoelectronic effects. We show that the explicit addition of stereoelectronic interactions significantly improves the performance of molecular machine learning models. Furthermore, stereoelectronics-infused representations can be learned and deployed with a tailored double graph neural network workflow, enabling its application to any downstream molecular machine learning task. Finally, we show that the learned representations allow for facile stereoelectronic evaluation of previously intractable systems, such as entire proteins, opening new avenues of molecular design.
利用注入立体电子学的分子图推进分子机器(学习)表示法
分子表征是我们理解物理世界的基础元素。从化学反应的基本原理到新疗法和新材料的设计,它都具有重要意义。以前的分子机器学习模型采用的字符串、指纹、全局特征和简单分子图本身就是信息稀疏的表征。然而,随着预测任务复杂性的增加,分子表征需要编码保真度更高的信息。这项工作介绍了一种通过立体电子效应向分子图中注入丰富量子化学信息的新方法。我们的研究表明,明确添加立体电子相互作用能显著提高分子机器学习模型的性能。此外,注入立体电子效应的表征可以通过定制的双图神经网络工作流来学习和部署,从而使其能够应用于任何下游分子机器学习任务。最后,我们展示了学习到的表征允许对以前难以处理的系统(如整个蛋白质)进行简便的立体电子学评估,为分子设计开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信