Cohomology of left-symmetric color algebras

Yin Chen, Runxuan Zhang
{"title":"Cohomology of left-symmetric color algebras","authors":"Yin Chen, Runxuan Zhang","doi":"arxiv-2408.04033","DOIUrl":null,"url":null,"abstract":"We develop a new cohomology theory for finite-dimensional left-symmetric\ncolor algebras and their finite-dimensional bimodules, establishing a\nconnection between Lie color cohomology and left-symmetric color cohomology. We\nprove that the cohomology of a left-symmetric color algebra $A$ with\ncoefficients in a bimodule $V$ can be computed by a lower degree cohomology of\nthe corresponding Lie color algebra with coefficients in Hom$(A,V)$,\ngeneralizing a result of Dzhumadil'daev in right-symmetric cohomology. We also\nexplore the varieties of two-dimensional and three-dimensional left-symmetric\ncolor algebras.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a new cohomology theory for finite-dimensional left-symmetric color algebras and their finite-dimensional bimodules, establishing a connection between Lie color cohomology and left-symmetric color cohomology. We prove that the cohomology of a left-symmetric color algebra $A$ with coefficients in a bimodule $V$ can be computed by a lower degree cohomology of the corresponding Lie color algebra with coefficients in Hom$(A,V)$, generalizing a result of Dzhumadil'daev in right-symmetric cohomology. We also explore the varieties of two-dimensional and three-dimensional left-symmetric color algebras.
左对称色彩代数的同调性
我们为有限维左对称颜色代数及其有限维双模发展了一种新的同调理论,建立了李氏颜色同调与左对称颜色同调之间的联系。我们证明,左对称颜色代数 $A$ 的系数在双模块 $V$ 中的同调可以通过相应的系数在 Hom$(A,V)$中的列色代数的低度同调来计算,这推广了 Dzhumadil'daev 在右对称同调中的一个结果。我们还探讨了二维和三维左对称颜色代数的品种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信