Element absorb Topology on rings

Ali Shahidikia
{"title":"Element absorb Topology on rings","authors":"Ali Shahidikia","doi":"arxiv-2408.03300","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new Topology related to special elements in a\nnoncummutative rings. Consider a ring $R$, we denote by $\\textrm{Id}(R)$ the\nset of all idempotent elements in $R$. Let $a$ is an element of $R$. The\nelement absorb Topology related to $a$ is defined as $\\tau_a:=\\{ I\\subseteq R |\nIa \\subseteq I\\} \\subseteq P(R)$. Since this topology is obtained from act of\nring, it explains Some of algebraic properties of ring in Topological language\n.In a special case when $e$ ia an idempotent element, $\\tau_e:=\\{ I\\subseteq R\n| Ie \\subseteq I\\} \\subseteq P(R)$. We present Topological description of the\npierce decomposition $ R=Re\\oplus R(1-e)$.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a new Topology related to special elements in a noncummutative rings. Consider a ring $R$, we denote by $\textrm{Id}(R)$ the set of all idempotent elements in $R$. Let $a$ is an element of $R$. The element absorb Topology related to $a$ is defined as $\tau_a:=\{ I\subseteq R | Ia \subseteq I\} \subseteq P(R)$. Since this topology is obtained from act of ring, it explains Some of algebraic properties of ring in Topological language .In a special case when $e$ ia an idempotent element, $\tau_e:=\{ I\subseteq R | Ie \subseteq I\} \subseteq P(R)$. We present Topological description of the pierce decomposition $ R=Re\oplus R(1-e)$.
元素吸收 环形拓扑
在本文中,我们将介绍一种与非互变环中的特殊元素有关的新拓扑学。考虑一个环 $R$,我们用 $\textrm{Id}(R)$ 表示 $R$ 中所有幂等元素的集合。设 $a$ 是 $R$ 的一个元素。与$a$相关的元素吸收拓扑定义为$\tau_a:=\{ I\subseteq R |Ia \subseteq I\}.\P(R)$.在一种特殊情况下,当 $e$ 是一个幂等元素时,$\tau_e:=\{ Isubseteq R| Ie \subseteq I\} 。\P(R)$.我们提出了皮尔斯分解的拓扑描述 $ R=Re\oplus R(1-e)$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信