Edge importance in complex networks

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Silvia Noschese, Lothar Reichel
{"title":"Edge importance in complex networks","authors":"Silvia Noschese, Lothar Reichel","doi":"10.1007/s11075-024-01881-1","DOIUrl":null,"url":null,"abstract":"<p>Complex networks are made up of vertices and edges. The latter connect the vertices. There are several ways to measure the importance of the vertices, e.g., by counting the number of edges that start or end at each vertex, or by using the subgraph centrality of the vertices. It is more difficult to assess the importance of the edges. One approach is to consider the line graph associated with the given network and determine the importance of the vertices of the line graph, but this is fairly complicated except for small networks. This paper compares two approaches to estimate the importance of edges of medium-sized to large networks. One approach computes partial derivatives of the total communicability of the weights of the edges, where a partial derivative of large magnitude indicates that the corresponding edge may be important. Our second approach computes the Perron sensitivity of the edges. A high sensitivity signals that the edge may be important. The performance of these methods and some computational aspects are discussed. Applications of interest include to determine whether a network can be replaced by a network with fewer edges with about the same communicability.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"31 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01881-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Complex networks are made up of vertices and edges. The latter connect the vertices. There are several ways to measure the importance of the vertices, e.g., by counting the number of edges that start or end at each vertex, or by using the subgraph centrality of the vertices. It is more difficult to assess the importance of the edges. One approach is to consider the line graph associated with the given network and determine the importance of the vertices of the line graph, but this is fairly complicated except for small networks. This paper compares two approaches to estimate the importance of edges of medium-sized to large networks. One approach computes partial derivatives of the total communicability of the weights of the edges, where a partial derivative of large magnitude indicates that the corresponding edge may be important. Our second approach computes the Perron sensitivity of the edges. A high sensitivity signals that the edge may be important. The performance of these methods and some computational aspects are discussed. Applications of interest include to determine whether a network can be replaced by a network with fewer edges with about the same communicability.

Abstract Image

复杂网络中边缘的重要性
复杂网络由顶点和边组成。后者连接顶点。有几种方法可以衡量顶点的重要性,例如,计算以每个顶点为起点或终点的边的数量,或使用顶点的子图中心性。评估边的重要性则更为困难。一种方法是考虑与给定网络相关的线图,并确定线图顶点的重要性,但除了小型网络外,这种方法相当复杂。本文比较了两种估算中型到大型网络边缘重要性的方法。其中一种方法是计算边缘权重的总可传播性的偏导数,偏导数的大小越大,说明相应的边缘可能越重要。我们的第二种方法是计算边缘的 Perron 敏感度。灵敏度高表明该边缘可能很重要。本文讨论了这些方法的性能和一些计算方面的问题。我们感兴趣的应用包括确定一个网络是否可以被一个边缘数量较少但通信能力大致相同的网络所取代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信