Estimates of discrete time derivatives for the parabolic-parabolic Robin-Robin coupling method

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Erik Burman, Rebecca Durst, Miguel A. Fernández, Johnny Guzmán, Sijing Liu
{"title":"Estimates of discrete time derivatives for the parabolic-parabolic Robin-Robin coupling method","authors":"Erik Burman, Rebecca Durst, Miguel A. Fernández, Johnny Guzmán, Sijing Liu","doi":"10.1007/s11075-024-01902-z","DOIUrl":null,"url":null,"abstract":"<p>We consider a loosely coupled, non-iterative Robin-Robin coupling method proposed and analyzed in Burman et al. (J. Numer. Math. <b>31</b>(1):59–77, 2023) for a parabolic-parabolic interface problem and prove estimates for the discrete time derivatives of the scalar field in different norms. When the interface is flat and perpendicular to two of the edges of the domain we prove error estimates in the <span>\\(H^2\\)</span>-norm. Such estimates are key ingredients to analyze a defect correction method for the parabolic-parabolic interface problem. Numerical results are shown to support our findings.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"22 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01902-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a loosely coupled, non-iterative Robin-Robin coupling method proposed and analyzed in Burman et al. (J. Numer. Math. 31(1):59–77, 2023) for a parabolic-parabolic interface problem and prove estimates for the discrete time derivatives of the scalar field in different norms. When the interface is flat and perpendicular to two of the edges of the domain we prove error estimates in the \(H^2\)-norm. Such estimates are key ingredients to analyze a defect correction method for the parabolic-parabolic interface problem. Numerical results are shown to support our findings.

Abstract Image

抛物线-抛物线罗宾-罗宾耦合法的离散时间导数估算
我们考虑 Burman 等人(J. Numer. Math.Math.31(1):59-77, 2023)中提出并分析的抛物线-抛物线界面问题,并证明了不同规范下标量场离散时间导数的估计值。当界面平坦且垂直于域的两条边时,我们证明了在\(H^2\)规范下的误差估计。这些估计值是分析抛物线-抛物线界面问题缺陷修正方法的关键要素。数值结果表明支持我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信