Stochastic theta methods for random periodic solution of stochastic differential equations under non-globally Lipschitz conditions

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Ziheng Chen, Liangmin Cao, Lin Chen
{"title":"Stochastic theta methods for random periodic solution of stochastic differential equations under non-globally Lipschitz conditions","authors":"Ziheng Chen, Liangmin Cao, Lin Chen","doi":"10.1007/s11075-024-01892-y","DOIUrl":null,"url":null,"abstract":"<p>This work focuses on the numerical approximations of random periodic solutions of stochastic differential equations (SDEs). Under non-globally Lipschitz conditions, we prove the existence and uniqueness of random periodic solutions for the considered equations and its numerical approximations generated by the stochastic theta (ST) methods with <span>\\(\\theta \\in (1/2,1]\\)</span>. It is shown that the random periodic solution of each ST method converges strongly in the mean square sense to that of SDEs. More precisely, the mean square convergence order is 1/2 for SDEs with multiplicative noise and 1 for SDEs with additive noise, respectively. Numerical results are finally reported to confirm these theoretical findings.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"2 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01892-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work focuses on the numerical approximations of random periodic solutions of stochastic differential equations (SDEs). Under non-globally Lipschitz conditions, we prove the existence and uniqueness of random periodic solutions for the considered equations and its numerical approximations generated by the stochastic theta (ST) methods with \(\theta \in (1/2,1]\). It is shown that the random periodic solution of each ST method converges strongly in the mean square sense to that of SDEs. More precisely, the mean square convergence order is 1/2 for SDEs with multiplicative noise and 1 for SDEs with additive noise, respectively. Numerical results are finally reported to confirm these theoretical findings.

Abstract Image

非全局 Lipschitz 条件下随机微分方程随机周期解的随机 Theta 方法
这项研究的重点是随机微分方程(SDE)的随机周期解的数值近似。在非全局 Lipschitz 条件下,我们证明了所考虑方程的随机周期解的存在性和唯一性,以及由 \theta \in (1/2,1]\) 随机θ(ST)方法产生的随机周期解的数值近似。结果表明,每种 ST 方法的随机周期解在均方意义上都强烈收敛于 SDE 的随机周期解。更准确地说,对于乘性噪声的 SDE 和加性噪声的 SDE,其均方收敛阶数分别为 1/2 和 1。最后报告的数值结果证实了这些理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信