A novel higher-order efficient computational method for pricing European and Asian options

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Saurabh Bansal, Srinivasan Natesan
{"title":"A novel higher-order efficient computational method for pricing European and Asian options","authors":"Saurabh Bansal, Srinivasan Natesan","doi":"10.1007/s11075-024-01909-6","DOIUrl":null,"url":null,"abstract":"<p>In this article, we present a fourth-order accurate numerical method for solving generalized Black-Scholes PDE describing European and Asian options. Initially, we discretize the time derivative by the Crank-Nicolson scheme, and then the resultant semi-discrete problem by the central difference scheme on uniform meshes. In order to enhance the order of convergence of the proposed scheme, we employ the Richardson extrapolation method, by using two different meshes to solve the fully discrete problem. The stability and convergence are studied. To validate the proposed technique, several numerical experiments are carried out.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"2 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01909-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present a fourth-order accurate numerical method for solving generalized Black-Scholes PDE describing European and Asian options. Initially, we discretize the time derivative by the Crank-Nicolson scheme, and then the resultant semi-discrete problem by the central difference scheme on uniform meshes. In order to enhance the order of convergence of the proposed scheme, we employ the Richardson extrapolation method, by using two different meshes to solve the fully discrete problem. The stability and convergence are studied. To validate the proposed technique, several numerical experiments are carried out.

Abstract Image

为欧洲和亚洲期权定价的新型高阶高效计算方法
本文提出了一种四阶精确数值方法,用于求解描述欧洲和亚洲期权的广义 Black-Scholes PDE。首先,我们采用 Crank-Nicolson 方案对时间导数进行离散化,然后在均匀网格上采用中心差分方案对所得到的半离散问题进行离散化。为了提高所提方案的收敛阶次,我们采用了 Richardson 外推法,通过使用两个不同的网格来求解完全离散问题。对稳定性和收敛性进行了研究。为了验证所提出的技术,我们进行了几次数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信