{"title":"Volatile Organic Compound Emissions in the Changing Arctic","authors":"Riikka Rinnan","doi":"10.1146/annurev-ecolsys-102722-125156","DOIUrl":null,"url":null,"abstract":"Arctic ecosystems have long been thought to be minimal sources of volatile organic compounds (VOCs) to the atmosphere because of their low plant biomass and cold temperatures. However, these ecosystems experience rapid climatic warming that alters vegetation composition. Tundra vegetation VOC emissions have stronger temperature dependency than current emission models estimate. Thus, warming, both directly and indirectly (via vegetation changes) likely increases the release and alters the blend of emitted plant volatiles, such as isoprene, monoterpenes, and sesquiterpenes, from Arctic ecosystems. Climate change also increases the pressure of both background herbivory and insect outbreaks. The resulting leaf damage induces the production of volatile defense compounds, and warming amplifies this response. Soils function as both sources and sinks of VOCs, and thawing permafrost is a hotspot for soil VOC emissions, contributing to ecosystem emissions if the VOCs bypass microbial uptake. Overall, Arctic VOC emissions are likely to increase in the future with implications for ecological interactions and atmospheric composition.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"116 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Ecology, Evolution, and Systematics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-ecolsys-102722-125156","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Arctic ecosystems have long been thought to be minimal sources of volatile organic compounds (VOCs) to the atmosphere because of their low plant biomass and cold temperatures. However, these ecosystems experience rapid climatic warming that alters vegetation composition. Tundra vegetation VOC emissions have stronger temperature dependency than current emission models estimate. Thus, warming, both directly and indirectly (via vegetation changes) likely increases the release and alters the blend of emitted plant volatiles, such as isoprene, monoterpenes, and sesquiterpenes, from Arctic ecosystems. Climate change also increases the pressure of both background herbivory and insect outbreaks. The resulting leaf damage induces the production of volatile defense compounds, and warming amplifies this response. Soils function as both sources and sinks of VOCs, and thawing permafrost is a hotspot for soil VOC emissions, contributing to ecosystem emissions if the VOCs bypass microbial uptake. Overall, Arctic VOC emissions are likely to increase in the future with implications for ecological interactions and atmospheric composition.
期刊介绍:
The Annual Review of Ecology, Evolution, and Systematics is a scholarly publication that has been in circulation since 1970. It focuses on important advancements in the areas of ecology, evolutionary biology, and systematics, with relevance to all forms of life on Earth. The journal features essay reviews that encompass various topics such as phylogeny, speciation, molecular evolution, behavior, evolutionary physiology, population dynamics, ecosystem processes, and applications in invasion biology, conservation, and environmental management. Recently, the current volume of the journal transitioned from a subscription-based model to open access through the Annual Reviews' Subscribe to Open program. Consequently, all articles published in the current volume are now available under a CC BY license.